/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_scale_q15.c * Description: Multiplies a Q15 vector by a scalar * * $Date: 27. January 2017 * $Revision: V.1.5.1 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_math.h" /** * @ingroup groupMath */ /** * @addtogroup scale * @{ */ /** * @brief Multiplies a Q15 vector by a scalar. * @param[in] *pSrc points to the input vector * @param[in] scaleFract fractional portion of the scale value * @param[in] shift number of bits to shift the result by * @param[out] *pDst points to the output vector * @param[in] blockSize number of samples in the vector * @return none. * * Scaling and Overflow Behavior: * \par * The input data *pSrc and scaleFract are in 1.15 format. * These are multiplied to yield a 2.30 intermediate result and this is shifted with saturation to 1.15 format. */ void arm_scale_q15( q15_t * pSrc, q15_t scaleFract, int8_t shift, q15_t * pDst, uint32_t blockSize) { int8_t kShift = 15 - shift; /* shift to apply after scaling */ uint32_t blkCnt; /* loop counter */ #if defined (ARM_MATH_DSP) /* Run the below code for Cortex-M4 and Cortex-M3 */ q15_t in1, in2, in3, in4; q31_t inA1, inA2; /* Temporary variables */ q31_t out1, out2, out3, out4; /*loop Unrolling */ blkCnt = blockSize >> 2u; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while (blkCnt > 0u) { /* Reading 2 inputs from memory */ inA1 = *__SIMD32(pSrc)++; inA2 = *__SIMD32(pSrc)++; /* C = A * scale */ /* Scale the inputs and then store the 2 results in the destination buffer * in single cycle by packing the outputs */ out1 = (q31_t) ((q15_t) (inA1 >> 16) * scaleFract); out2 = (q31_t) ((q15_t) inA1 * scaleFract); out3 = (q31_t) ((q15_t) (inA2 >> 16) * scaleFract); out4 = (q31_t) ((q15_t) inA2 * scaleFract); /* apply shifting */ out1 = out1 >> kShift; out2 = out2 >> kShift; out3 = out3 >> kShift; out4 = out4 >> kShift; /* saturate the output */ in1 = (q15_t) (__SSAT(out1, 16)); in2 = (q15_t) (__SSAT(out2, 16)); in3 = (q15_t) (__SSAT(out3, 16)); in4 = (q15_t) (__SSAT(out4, 16)); /* store the result to destination */ *__SIMD32(pDst)++ = __PKHBT(in2, in1, 16); *__SIMD32(pDst)++ = __PKHBT(in4, in3, 16); /* Decrement the loop counter */ blkCnt--; } /* If the blockSize is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = blockSize % 0x4u; while (blkCnt > 0u) { /* C = A * scale */ /* Scale the input and then store the result in the destination buffer. */ *pDst++ = (q15_t) (__SSAT(((*pSrc++) * scaleFract) >> kShift, 16)); /* Decrement the loop counter */ blkCnt--; } #else /* Run the below code for Cortex-M0 */ /* Initialize blkCnt with number of samples */ blkCnt = blockSize; while (blkCnt > 0u) { /* C = A * scale */ /* Scale the input and then store the result in the destination buffer. */ *pDst++ = (q15_t) (__SSAT(((q31_t) * pSrc++ * scaleFract) >> kShift, 16)); /* Decrement the loop counter */ blkCnt--; } #endif /* #if defined (ARM_MATH_DSP) */ } /** * @} end of scale group */