/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_cmplx_mag_q15.c * Description: Q15 complex magnitude * * $Date: 27. January 2017 * $Revision: V.1.5.1 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_math.h" /** * @ingroup groupCmplxMath */ /** * @addtogroup cmplx_mag * @{ */ /** * @brief Q15 complex magnitude * @param *pSrc points to the complex input vector * @param *pDst points to the real output vector * @param numSamples number of complex samples in the input vector * @return none. * * Scaling and Overflow Behavior: * \par * The function implements 1.15 by 1.15 multiplications and finally output is converted into 2.14 format. */ void arm_cmplx_mag_q15( q15_t * pSrc, q15_t * pDst, uint32_t numSamples) { q31_t acc0, acc1; /* Accumulators */ #if defined (ARM_MATH_DSP) /* Run the below code for Cortex-M4 and Cortex-M3 */ uint32_t blkCnt; /* loop counter */ q31_t in1, in2, in3, in4; q31_t acc2, acc3; /*loop Unrolling */ blkCnt = numSamples >> 2u; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while (blkCnt > 0u) { /* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */ in1 = *__SIMD32(pSrc)++; in2 = *__SIMD32(pSrc)++; in3 = *__SIMD32(pSrc)++; in4 = *__SIMD32(pSrc)++; acc0 = __SMUAD(in1, in1); acc1 = __SMUAD(in2, in2); acc2 = __SMUAD(in3, in3); acc3 = __SMUAD(in4, in4); /* store the result in 2.14 format in the destination buffer. */ arm_sqrt_q15((q15_t) ((acc0) >> 17), pDst++); arm_sqrt_q15((q15_t) ((acc1) >> 17), pDst++); arm_sqrt_q15((q15_t) ((acc2) >> 17), pDst++); arm_sqrt_q15((q15_t) ((acc3) >> 17), pDst++); /* Decrement the loop counter */ blkCnt--; } /* If the numSamples is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = numSamples % 0x4u; while (blkCnt > 0u) { /* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */ in1 = *__SIMD32(pSrc)++; acc0 = __SMUAD(in1, in1); /* store the result in 2.14 format in the destination buffer. */ arm_sqrt_q15((q15_t) (acc0 >> 17), pDst++); /* Decrement the loop counter */ blkCnt--; } #else /* Run the below code for Cortex-M0 */ q15_t real, imag; /* Temporary variables to hold input values */ while (numSamples > 0u) { /* out = sqrt(real * real + imag * imag) */ real = *pSrc++; imag = *pSrc++; acc0 = (real * real); acc1 = (imag * imag); /* store the result in 2.14 format in the destination buffer. */ arm_sqrt_q15((q15_t) (((q63_t) acc0 + acc1) >> 17), pDst++); /* Decrement the loop counter */ numSamples--; } #endif /* #if defined (ARM_MATH_DSP) */ } /** * @} end of cmplx_mag group */