/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_mat_inverse_f32.c * Description: Floating-point matrix inverse * * $Date: 27. January 2017 * $Revision: V.1.5.1 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_math.h" /** * @ingroup groupMatrix */ /** * @defgroup MatrixInv Matrix Inverse * * Computes the inverse of a matrix. * * The inverse is defined only if the input matrix is square and non-singular (the determinant * is non-zero). The function checks that the input and output matrices are square and of the * same size. * * Matrix inversion is numerically sensitive and the CMSIS DSP library only supports matrix * inversion of floating-point matrices. * * \par Algorithm * The Gauss-Jordan method is used to find the inverse. * The algorithm performs a sequence of elementary row-operations until it * reduces the input matrix to an identity matrix. Applying the same sequence * of elementary row-operations to an identity matrix yields the inverse matrix. * If the input matrix is singular, then the algorithm terminates and returns error status * ARM_MATH_SINGULAR. * \image html MatrixInverse.gif "Matrix Inverse of a 3 x 3 matrix using Gauss-Jordan Method" */ /** * @addtogroup MatrixInv * @{ */ /** * @brief Floating-point matrix inverse. * @param[in] *pSrc points to input matrix structure * @param[out] *pDst points to output matrix structure * @return The function returns * ARM_MATH_SIZE_MISMATCH if the input matrix is not square or if the size * of the output matrix does not match the size of the input matrix. * If the input matrix is found to be singular (non-invertible), then the function returns * ARM_MATH_SINGULAR. Otherwise, the function returns ARM_MATH_SUCCESS. */ arm_status arm_mat_inverse_f32( const arm_matrix_instance_f32 * pSrc, arm_matrix_instance_f32 * pDst) { float32_t *pIn = pSrc->pData; /* input data matrix pointer */ float32_t *pOut = pDst->pData; /* output data matrix pointer */ float32_t *pInT1, *pInT2; /* Temporary input data matrix pointer */ float32_t *pOutT1, *pOutT2; /* Temporary output data matrix pointer */ float32_t *pPivotRowIn, *pPRT_in, *pPivotRowDst, *pPRT_pDst; /* Temporary input and output data matrix pointer */ uint32_t numRows = pSrc->numRows; /* Number of rows in the matrix */ uint32_t numCols = pSrc->numCols; /* Number of Cols in the matrix */ #if defined (ARM_MATH_DSP) float32_t maxC; /* maximum value in the column */ /* Run the below code for Cortex-M4 and Cortex-M3 */ float32_t Xchg, in = 0.0f, in1; /* Temporary input values */ uint32_t i, rowCnt, flag = 0u, j, loopCnt, k, l; /* loop counters */ arm_status status; /* status of matrix inverse */ #ifdef ARM_MATH_MATRIX_CHECK /* Check for matrix mismatch condition */ if ((pSrc->numRows != pSrc->numCols) || (pDst->numRows != pDst->numCols) || (pSrc->numRows != pDst->numRows)) { /* Set status as ARM_MATH_SIZE_MISMATCH */ status = ARM_MATH_SIZE_MISMATCH; } else #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ { /*-------------------------------------------------------------------------------------------------------------- * Matrix Inverse can be solved using elementary row operations. * * Gauss-Jordan Method: * * 1. First combine the identity matrix and the input matrix separated by a bar to form an * augmented matrix as follows: * _ _ _ _ * | a11 a12 | 1 0 | | X11 X12 | * | | | = | | * |_ a21 a22 | 0 1 _| |_ X21 X21 _| * * 2. In our implementation, pDst Matrix is used as identity matrix. * * 3. Begin with the first row. Let i = 1. * * 4. Check to see if the pivot for column i is the greatest of the column. * The pivot is the element of the main diagonal that is on the current row. * For instance, if working with row i, then the pivot element is aii. * If the pivot is not the most significant of the columns, exchange that row with a row * below it that does contain the most significant value in column i. If the most * significant value of the column is zero, then an inverse to that matrix does not exist. * The most significant value of the column is the absolute maximum. * * 5. Divide every element of row i by the pivot. * * 6. For every row below and row i, replace that row with the sum of that row and * a multiple of row i so that each new element in column i below row i is zero. * * 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros * for every element below and above the main diagonal. * * 8. Now an identical matrix is formed to the left of the bar(input matrix, pSrc). * Therefore, the matrix to the right of the bar is our solution(pDst matrix, pDst). *----------------------------------------------------------------------------------------------------------------*/ /* Working pointer for destination matrix */ pOutT1 = pOut; /* Loop over the number of rows */ rowCnt = numRows; /* Making the destination matrix as identity matrix */ while (rowCnt > 0u) { /* Writing all zeroes in lower triangle of the destination matrix */ j = numRows - rowCnt; while (j > 0u) { *pOutT1++ = 0.0f; j--; } /* Writing all ones in the diagonal of the destination matrix */ *pOutT1++ = 1.0f; /* Writing all zeroes in upper triangle of the destination matrix */ j = rowCnt - 1u; while (j > 0u) { *pOutT1++ = 0.0f; j--; } /* Decrement the loop counter */ rowCnt--; } /* Loop over the number of columns of the input matrix. All the elements in each column are processed by the row operations */ loopCnt = numCols; /* Index modifier to navigate through the columns */ l = 0u; while (loopCnt > 0u) { /* Check if the pivot element is zero.. * If it is zero then interchange the row with non zero row below. * If there is no non zero element to replace in the rows below, * then the matrix is Singular. */ /* Working pointer for the input matrix that points * to the pivot element of the particular row */ pInT1 = pIn + (l * numCols); /* Working pointer for the destination matrix that points * to the pivot element of the particular row */ pOutT1 = pOut + (l * numCols); /* Temporary variable to hold the pivot value */ in = *pInT1; /* Grab the most significant value from column l */ maxC = 0; for (i = l; i < numRows; i++) { maxC = *pInT1 > 0 ? (*pInT1 > maxC ? *pInT1 : maxC) : (-*pInT1 > maxC ? -*pInT1 : maxC); pInT1 += numCols; } /* Update the status if the matrix is singular */ if (maxC == 0.0f) { return ARM_MATH_SINGULAR; } /* Restore pInT1 */ pInT1 = pIn; /* Destination pointer modifier */ k = 1u; /* Check if the pivot element is the most significant of the column */ if ( (in > 0.0f ? in : -in) != maxC) { /* Loop over the number rows present below */ i = numRows - (l + 1u); while (i > 0u) { /* Update the input and destination pointers */ pInT2 = pInT1 + (numCols * l); pOutT2 = pOutT1 + (numCols * k); /* Look for the most significant element to * replace in the rows below */ if ((*pInT2 > 0.0f ? *pInT2: -*pInT2) == maxC) { /* Loop over number of columns * to the right of the pilot element */ j = numCols - l; while (j > 0u) { /* Exchange the row elements of the input matrix */ Xchg = *pInT2; *pInT2++ = *pInT1; *pInT1++ = Xchg; /* Decrement the loop counter */ j--; } /* Loop over number of columns of the destination matrix */ j = numCols; while (j > 0u) { /* Exchange the row elements of the destination matrix */ Xchg = *pOutT2; *pOutT2++ = *pOutT1; *pOutT1++ = Xchg; /* Decrement the loop counter */ j--; } /* Flag to indicate whether exchange is done or not */ flag = 1u; /* Break after exchange is done */ break; } /* Update the destination pointer modifier */ k++; /* Decrement the loop counter */ i--; } } /* Update the status if the matrix is singular */ if ((flag != 1u) && (in == 0.0f)) { return ARM_MATH_SINGULAR; } /* Points to the pivot row of input and destination matrices */ pPivotRowIn = pIn + (l * numCols); pPivotRowDst = pOut + (l * numCols); /* Temporary pointers to the pivot row pointers */ pInT1 = pPivotRowIn; pInT2 = pPivotRowDst; /* Pivot element of the row */ in = *pPivotRowIn; /* Loop over number of columns * to the right of the pilot element */ j = (numCols - l); while (j > 0u) { /* Divide each element of the row of the input matrix * by the pivot element */ in1 = *pInT1; *pInT1++ = in1 / in; /* Decrement the loop counter */ j--; } /* Loop over number of columns of the destination matrix */ j = numCols; while (j > 0u) { /* Divide each element of the row of the destination matrix * by the pivot element */ in1 = *pInT2; *pInT2++ = in1 / in; /* Decrement the loop counter */ j--; } /* Replace the rows with the sum of that row and a multiple of row i * so that each new element in column i above row i is zero.*/ /* Temporary pointers for input and destination matrices */ pInT1 = pIn; pInT2 = pOut; /* index used to check for pivot element */ i = 0u; /* Loop over number of rows */ /* to be replaced by the sum of that row and a multiple of row i */ k = numRows; while (k > 0u) { /* Check for the pivot element */ if (i == l) { /* If the processing element is the pivot element, only the columns to the right are to be processed */ pInT1 += numCols - l; pInT2 += numCols; } else { /* Element of the reference row */ in = *pInT1; /* Working pointers for input and destination pivot rows */ pPRT_in = pPivotRowIn; pPRT_pDst = pPivotRowDst; /* Loop over the number of columns to the right of the pivot element, to replace the elements in the input matrix */ j = (numCols - l); while (j > 0u) { /* Replace the element by the sum of that row and a multiple of the reference row */ in1 = *pInT1; *pInT1++ = in1 - (in * *pPRT_in++); /* Decrement the loop counter */ j--; } /* Loop over the number of columns to replace the elements in the destination matrix */ j = numCols; while (j > 0u) { /* Replace the element by the sum of that row and a multiple of the reference row */ in1 = *pInT2; *pInT2++ = in1 - (in * *pPRT_pDst++); /* Decrement the loop counter */ j--; } } /* Increment the temporary input pointer */ pInT1 = pInT1 + l; /* Decrement the loop counter */ k--; /* Increment the pivot index */ i++; } /* Increment the input pointer */ pIn++; /* Decrement the loop counter */ loopCnt--; /* Increment the index modifier */ l++; } #else /* Run the below code for Cortex-M0 */ float32_t Xchg, in = 0.0f; /* Temporary input values */ uint32_t i, rowCnt, flag = 0u, j, loopCnt, k, l; /* loop counters */ arm_status status; /* status of matrix inverse */ #ifdef ARM_MATH_MATRIX_CHECK /* Check for matrix mismatch condition */ if ((pSrc->numRows != pSrc->numCols) || (pDst->numRows != pDst->numCols) || (pSrc->numRows != pDst->numRows)) { /* Set status as ARM_MATH_SIZE_MISMATCH */ status = ARM_MATH_SIZE_MISMATCH; } else #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ { /*-------------------------------------------------------------------------------------------------------------- * Matrix Inverse can be solved using elementary row operations. * * Gauss-Jordan Method: * * 1. First combine the identity matrix and the input matrix separated by a bar to form an * augmented matrix as follows: * _ _ _ _ _ _ _ _ * | | a11 a12 | | | 1 0 | | | X11 X12 | * | | | | | | | = | | * |_ |_ a21 a22 _| | |_0 1 _| _| |_ X21 X21 _| * * 2. In our implementation, pDst Matrix is used as identity matrix. * * 3. Begin with the first row. Let i = 1. * * 4. Check to see if the pivot for row i is zero. * The pivot is the element of the main diagonal that is on the current row. * For instance, if working with row i, then the pivot element is aii. * If the pivot is zero, exchange that row with a row below it that does not * contain a zero in column i. If this is not possible, then an inverse * to that matrix does not exist. * * 5. Divide every element of row i by the pivot. * * 6. For every row below and row i, replace that row with the sum of that row and * a multiple of row i so that each new element in column i below row i is zero. * * 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros * for every element below and above the main diagonal. * * 8. Now an identical matrix is formed to the left of the bar(input matrix, src). * Therefore, the matrix to the right of the bar is our solution(dst matrix, dst). *----------------------------------------------------------------------------------------------------------------*/ /* Working pointer for destination matrix */ pOutT1 = pOut; /* Loop over the number of rows */ rowCnt = numRows; /* Making the destination matrix as identity matrix */ while (rowCnt > 0u) { /* Writing all zeroes in lower triangle of the destination matrix */ j = numRows - rowCnt; while (j > 0u) { *pOutT1++ = 0.0f; j--; } /* Writing all ones in the diagonal of the destination matrix */ *pOutT1++ = 1.0f; /* Writing all zeroes in upper triangle of the destination matrix */ j = rowCnt - 1u; while (j > 0u) { *pOutT1++ = 0.0f; j--; } /* Decrement the loop counter */ rowCnt--; } /* Loop over the number of columns of the input matrix. All the elements in each column are processed by the row operations */ loopCnt = numCols; /* Index modifier to navigate through the columns */ l = 0u; //for(loopCnt = 0u; loopCnt < numCols; loopCnt++) while (loopCnt > 0u) { /* Check if the pivot element is zero.. * If it is zero then interchange the row with non zero row below. * If there is no non zero element to replace in the rows below, * then the matrix is Singular. */ /* Working pointer for the input matrix that points * to the pivot element of the particular row */ pInT1 = pIn + (l * numCols); /* Working pointer for the destination matrix that points * to the pivot element of the particular row */ pOutT1 = pOut + (l * numCols); /* Temporary variable to hold the pivot value */ in = *pInT1; /* Destination pointer modifier */ k = 1u; /* Check if the pivot element is zero */ if (*pInT1 == 0.0f) { /* Loop over the number rows present below */ for (i = (l + 1u); i < numRows; i++) { /* Update the input and destination pointers */ pInT2 = pInT1 + (numCols * l); pOutT2 = pOutT1 + (numCols * k); /* Check if there is a non zero pivot element to * replace in the rows below */ if (*pInT2 != 0.0f) { /* Loop over number of columns * to the right of the pilot element */ for (j = 0u; j < (numCols - l); j++) { /* Exchange the row elements of the input matrix */ Xchg = *pInT2; *pInT2++ = *pInT1; *pInT1++ = Xchg; } for (j = 0u; j < numCols; j++) { Xchg = *pOutT2; *pOutT2++ = *pOutT1; *pOutT1++ = Xchg; } /* Flag to indicate whether exchange is done or not */ flag = 1u; /* Break after exchange is done */ break; } /* Update the destination pointer modifier */ k++; } } /* Update the status if the matrix is singular */ if ((flag != 1u) && (in == 0.0f)) { return ARM_MATH_SINGULAR; } /* Points to the pivot row of input and destination matrices */ pPivotRowIn = pIn + (l * numCols); pPivotRowDst = pOut + (l * numCols); /* Temporary pointers to the pivot row pointers */ pInT1 = pPivotRowIn; pOutT1 = pPivotRowDst; /* Pivot element of the row */ in = *(pIn + (l * numCols)); /* Loop over number of columns * to the right of the pilot element */ for (j = 0u; j < (numCols - l); j++) { /* Divide each element of the row of the input matrix * by the pivot element */ *pInT1 = *pInT1 / in; pInT1++; } for (j = 0u; j < numCols; j++) { /* Divide each element of the row of the destination matrix * by the pivot element */ *pOutT1 = *pOutT1 / in; pOutT1++; } /* Replace the rows with the sum of that row and a multiple of row i * so that each new element in column i above row i is zero.*/ /* Temporary pointers for input and destination matrices */ pInT1 = pIn; pOutT1 = pOut; for (i = 0u; i < numRows; i++) { /* Check for the pivot element */ if (i == l) { /* If the processing element is the pivot element, only the columns to the right are to be processed */ pInT1 += numCols - l; pOutT1 += numCols; } else { /* Element of the reference row */ in = *pInT1; /* Working pointers for input and destination pivot rows */ pPRT_in = pPivotRowIn; pPRT_pDst = pPivotRowDst; /* Loop over the number of columns to the right of the pivot element, to replace the elements in the input matrix */ for (j = 0u; j < (numCols - l); j++) { /* Replace the element by the sum of that row and a multiple of the reference row */ *pInT1 = *pInT1 - (in * *pPRT_in++); pInT1++; } /* Loop over the number of columns to replace the elements in the destination matrix */ for (j = 0u; j < numCols; j++) { /* Replace the element by the sum of that row and a multiple of the reference row */ *pOutT1 = *pOutT1 - (in * *pPRT_pDst++); pOutT1++; } } /* Increment the temporary input pointer */ pInT1 = pInT1 + l; } /* Increment the input pointer */ pIn++; /* Decrement the loop counter */ loopCnt--; /* Increment the index modifier */ l++; } #endif /* #if defined (ARM_MATH_DSP) */ /* Set status as ARM_MATH_SUCCESS */ status = ARM_MATH_SUCCESS; if ((flag != 1u) && (in == 0.0f)) { pIn = pSrc->pData; for (i = 0; i < numRows * numCols; i++) { if (pIn[i] != 0.0f) break; } if (i == numRows * numCols) status = ARM_MATH_SINGULAR; } } /* Return to application */ return (status); } /** * @} end of MatrixInv group */