/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_mat_scale_q31.c * Description: Multiplies a Q31 matrix by a scalar * * $Date: 27. January 2017 * $Revision: V.1.5.1 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_math.h" /** * @ingroup groupMatrix */ /** * @addtogroup MatrixScale * @{ */ /** * @brief Q31 matrix scaling. * @param[in] *pSrc points to input matrix * @param[in] scaleFract fractional portion of the scale factor * @param[in] shift number of bits to shift the result by * @param[out] *pDst points to output matrix structure * @return The function returns either * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. * * @details * Scaling and Overflow Behavior: * \par * The input data *pSrc and scaleFract are in 1.31 format. * These are multiplied to yield a 2.62 intermediate result and this is shifted with saturation to 1.31 format. */ arm_status arm_mat_scale_q31( const arm_matrix_instance_q31 * pSrc, q31_t scaleFract, int32_t shift, arm_matrix_instance_q31 * pDst) { q31_t *pIn = pSrc->pData; /* input data matrix pointer */ q31_t *pOut = pDst->pData; /* output data matrix pointer */ uint32_t numSamples; /* total number of elements in the matrix */ int32_t totShift = shift + 1; /* shift to apply after scaling */ uint32_t blkCnt; /* loop counters */ arm_status status; /* status of matrix scaling */ q31_t in1, in2, out1; /* temporary variabels */ #if defined (ARM_MATH_DSP) q31_t in3, in4, out2, out3, out4; /* temporary variables */ #endif // #ifndef ARM_MAT_CM0 #ifdef ARM_MATH_MATRIX_CHECK /* Check for matrix mismatch */ if ((pSrc->numRows != pDst->numRows) || (pSrc->numCols != pDst->numCols)) { /* Set status as ARM_MATH_SIZE_MISMATCH */ status = ARM_MATH_SIZE_MISMATCH; } else #endif // #ifdef ARM_MATH_MATRIX_CHECK { /* Total number of samples in the input matrix */ numSamples = (uint32_t) pSrc->numRows * pSrc->numCols; #if defined (ARM_MATH_DSP) /* Run the below code for Cortex-M4 and Cortex-M3 */ /* Loop Unrolling */ blkCnt = numSamples >> 2u; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while (blkCnt > 0u) { /* C(m,n) = A(m,n) * k */ /* Read values from input */ in1 = *pIn; in2 = *(pIn + 1); in3 = *(pIn + 2); in4 = *(pIn + 3); /* multiply input with scaler value */ in1 = ((q63_t) in1 * scaleFract) >> 32; in2 = ((q63_t) in2 * scaleFract) >> 32; in3 = ((q63_t) in3 * scaleFract) >> 32; in4 = ((q63_t) in4 * scaleFract) >> 32; /* apply shifting */ out1 = in1 << totShift; out2 = in2 << totShift; /* saturate the results. */ if (in1 != (out1 >> totShift)) out1 = 0x7FFFFFFF ^ (in1 >> 31); if (in2 != (out2 >> totShift)) out2 = 0x7FFFFFFF ^ (in2 >> 31); out3 = in3 << totShift; out4 = in4 << totShift; *pOut = out1; *(pOut + 1) = out2; if (in3 != (out3 >> totShift)) out3 = 0x7FFFFFFF ^ (in3 >> 31); if (in4 != (out4 >> totShift)) out4 = 0x7FFFFFFF ^ (in4 >> 31); *(pOut + 2) = out3; *(pOut + 3) = out4; /* update pointers to process next sampels */ pIn += 4u; pOut += 4u; /* Decrement the numSamples loop counter */ blkCnt--; } /* If the numSamples is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = numSamples % 0x4u; #else /* Run the below code for Cortex-M0 */ /* Initialize blkCnt with number of samples */ blkCnt = numSamples; #endif /* #if defined (ARM_MATH_DSP) */ while (blkCnt > 0u) { /* C(m,n) = A(m,n) * k */ /* Scale, saturate and then store the results in the destination buffer. */ in1 = *pIn++; in2 = ((q63_t) in1 * scaleFract) >> 32; out1 = in2 << totShift; if (in2 != (out1 >> totShift)) out1 = 0x7FFFFFFF ^ (in2 >> 31); *pOut++ = out1; /* Decrement the numSamples loop counter */ blkCnt--; } /* Set status as ARM_MATH_SUCCESS */ status = ARM_MATH_SUCCESS; } /* Return to application */ return (status); } /** * @} end of MatrixScale group */