/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_rfft_q31.c * Description: FFT & RIFFT Q31 process function * * $Date: 27. January 2017 * $Revision: V.1.5.1 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_math.h" /* ---------------------------------------------------------------------- * Internal functions prototypes * -------------------------------------------------------------------- */ void arm_split_rfft_q31( q31_t * pSrc, uint32_t fftLen, q31_t * pATable, q31_t * pBTable, q31_t * pDst, uint32_t modifier); void arm_split_rifft_q31( q31_t * pSrc, uint32_t fftLen, q31_t * pATable, q31_t * pBTable, q31_t * pDst, uint32_t modifier); /** * @addtogroup RealFFT * @{ */ /** * @brief Processing function for the Q31 RFFT/RIFFT. * @param[in] *S points to an instance of the Q31 RFFT/RIFFT structure. * @param[in] *pSrc points to the input buffer. * @param[out] *pDst points to the output buffer. * @return none. * * \par Input an output formats: * \par * Internally input is downscaled by 2 for every stage to avoid saturations inside CFFT/CIFFT process. * Hence the output format is different for different RFFT sizes. * The input and output formats for different RFFT sizes and number of bits to upscale are mentioned in the tables below for RFFT and RIFFT: * \par * \image html RFFTQ31.gif "Input and Output Formats for Q31 RFFT" * * \par * \image html RIFFTQ31.gif "Input and Output Formats for Q31 RIFFT" */ void arm_rfft_q31( const arm_rfft_instance_q31 * S, q31_t * pSrc, q31_t * pDst) { const arm_cfft_instance_q31 *S_CFFT = S->pCfft; uint32_t i; uint32_t L2 = S->fftLenReal >> 1; /* Calculation of RIFFT of input */ if (S->ifftFlagR == 1u) { /* Real IFFT core process */ arm_split_rifft_q31(pSrc, L2, S->pTwiddleAReal, S->pTwiddleBReal, pDst, S->twidCoefRModifier); /* Complex IFFT process */ arm_cfft_q31(S_CFFT, pDst, S->ifftFlagR, S->bitReverseFlagR); for(i=0;ifftLenReal;i++) { pDst[i] = pDst[i] << 1; } } else { /* Calculation of RFFT of input */ /* Complex FFT process */ arm_cfft_q31(S_CFFT, pSrc, S->ifftFlagR, S->bitReverseFlagR); /* Real FFT core process */ arm_split_rfft_q31(pSrc, L2, S->pTwiddleAReal, S->pTwiddleBReal, pDst, S->twidCoefRModifier); } } /** * @} end of RealFFT group */ /** * @brief Core Real FFT process * @param[in] *pSrc points to the input buffer. * @param[in] fftLen length of FFT. * @param[in] *pATable points to the twiddle Coef A buffer. * @param[in] *pBTable points to the twiddle Coef B buffer. * @param[out] *pDst points to the output buffer. * @param[in] modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. * @return none. */ void arm_split_rfft_q31( q31_t * pSrc, uint32_t fftLen, q31_t * pATable, q31_t * pBTable, q31_t * pDst, uint32_t modifier) { uint32_t i; /* Loop Counter */ q31_t outR, outI; /* Temporary variables for output */ q31_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */ q31_t CoefA1, CoefA2, CoefB1; /* Temporary variables for twiddle coefficients */ q31_t *pOut1 = &pDst[2], *pOut2 = &pDst[(4u * fftLen) - 1u]; q31_t *pIn1 = &pSrc[2], *pIn2 = &pSrc[(2u * fftLen) - 1u]; /* Init coefficient pointers */ pCoefA = &pATable[modifier * 2u]; pCoefB = &pBTable[modifier * 2u]; i = fftLen - 1u; while (i > 0u) { /* outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1] + pSrc[2 * n - 2 * i] * pBTable[2 * i] + pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]); */ /* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] + pIn[2 * n - 2 * i] * pBTable[2 * i + 1] - pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); */ CoefA1 = *pCoefA++; CoefA2 = *pCoefA; /* outR = (pSrc[2 * i] * pATable[2 * i] */ mult_32x32_keep32_R(outR, *pIn1, CoefA1); /* outI = pIn[2 * i] * pATable[2 * i + 1] */ mult_32x32_keep32_R(outI, *pIn1++, CoefA2); /* - pSrc[2 * i + 1] * pATable[2 * i + 1] */ multSub_32x32_keep32_R(outR, *pIn1, CoefA2); /* (pIn[2 * i + 1] * pATable[2 * i] */ multAcc_32x32_keep32_R(outI, *pIn1++, CoefA1); /* pSrc[2 * n - 2 * i] * pBTable[2 * i] */ multSub_32x32_keep32_R(outR, *pIn2, CoefA2); CoefB1 = *pCoefB; /* pIn[2 * n - 2 * i] * pBTable[2 * i + 1] */ multSub_32x32_keep32_R(outI, *pIn2--, CoefB1); /* pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1] */ multAcc_32x32_keep32_R(outR, *pIn2, CoefB1); /* pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */ multSub_32x32_keep32_R(outI, *pIn2--, CoefA2); /* write output */ *pOut1++ = outR; *pOut1++ = outI; /* write complex conjugate output */ *pOut2-- = -outI; *pOut2-- = outR; /* update coefficient pointer */ pCoefB = pCoefB + (modifier * 2u); pCoefA = pCoefA + ((modifier * 2u) - 1u); i--; } pDst[2u * fftLen] = (pSrc[0] - pSrc[1]) >> 1; pDst[(2u * fftLen) + 1u] = 0; pDst[0] = (pSrc[0] + pSrc[1]) >> 1; pDst[1] = 0; } /** * @brief Core Real IFFT process * @param[in] *pSrc points to the input buffer. * @param[in] fftLen length of FFT. * @param[in] *pATable points to the twiddle Coef A buffer. * @param[in] *pBTable points to the twiddle Coef B buffer. * @param[out] *pDst points to the output buffer. * @param[in] modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. * @return none. */ void arm_split_rifft_q31( q31_t * pSrc, uint32_t fftLen, q31_t * pATable, q31_t * pBTable, q31_t * pDst, uint32_t modifier) { q31_t outR, outI; /* Temporary variables for output */ q31_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */ q31_t CoefA1, CoefA2, CoefB1; /* Temporary variables for twiddle coefficients */ q31_t *pIn1 = &pSrc[0], *pIn2 = &pSrc[(2u * fftLen) + 1u]; pCoefA = &pATable[0]; pCoefB = &pBTable[0]; while (fftLen > 0u) { /* outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] + pIn[2 * n - 2 * i] * pBTable[2 * i] - pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]); outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] - pIn[2 * n - 2 * i] * pBTable[2 * i + 1] - pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); */ CoefA1 = *pCoefA++; CoefA2 = *pCoefA; /* outR = (pIn[2 * i] * pATable[2 * i] */ mult_32x32_keep32_R(outR, *pIn1, CoefA1); /* - pIn[2 * i] * pATable[2 * i + 1] */ mult_32x32_keep32_R(outI, *pIn1++, -CoefA2); /* pIn[2 * i + 1] * pATable[2 * i + 1] */ multAcc_32x32_keep32_R(outR, *pIn1, CoefA2); /* pIn[2 * i + 1] * pATable[2 * i] */ multAcc_32x32_keep32_R(outI, *pIn1++, CoefA1); /* pIn[2 * n - 2 * i] * pBTable[2 * i] */ multAcc_32x32_keep32_R(outR, *pIn2, CoefA2); CoefB1 = *pCoefB; /* pIn[2 * n - 2 * i] * pBTable[2 * i + 1] */ multSub_32x32_keep32_R(outI, *pIn2--, CoefB1); /* pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1] */ multAcc_32x32_keep32_R(outR, *pIn2, CoefB1); /* pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */ multAcc_32x32_keep32_R(outI, *pIn2--, CoefA2); /* write output */ *pDst++ = outR; *pDst++ = outI; /* update coefficient pointer */ pCoefB = pCoefB + (modifier * 2u); pCoefA = pCoefA + ((modifier * 2u) - 1u); /* Decrement loop count */ fftLen--; } }