/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_dct4_q31.c * Description: Processing function of DCT4 & IDCT4 Q31 * * $Date: 27. January 2017 * $Revision: V.1.5.1 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_math.h" /** * @addtogroup DCT4_IDCT4 * @{ */ /** * @brief Processing function for the Q31 DCT4/IDCT4. * @param[in] *S points to an instance of the Q31 DCT4 structure. * @param[in] *pState points to state buffer. * @param[in,out] *pInlineBuffer points to the in-place input and output buffer. * @return none. * \par Input an output formats: * Input samples need to be downscaled by 1 bit to avoid saturations in the Q31 DCT process, * as the conversion from DCT2 to DCT4 involves one subtraction. * Internally inputs are downscaled in the RFFT process function to avoid overflows. * Number of bits downscaled, depends on the size of the transform. * The input and output formats for different DCT sizes and number of bits to upscale are mentioned in the table below: * * \image html dct4FormatsQ31Table.gif */ void arm_dct4_q31( const arm_dct4_instance_q31 * S, q31_t * pState, q31_t * pInlineBuffer) { uint16_t i; /* Loop counter */ q31_t *weights = S->pTwiddle; /* Pointer to the Weights table */ q31_t *cosFact = S->pCosFactor; /* Pointer to the cos factors table */ q31_t *pS1, *pS2, *pbuff; /* Temporary pointers for input buffer and pState buffer */ q31_t in; /* Temporary variable */ /* DCT4 computation involves DCT2 (which is calculated using RFFT) * along with some pre-processing and post-processing. * Computational procedure is explained as follows: * (a) Pre-processing involves multiplying input with cos factor, * r(n) = 2 * u(n) * cos(pi*(2*n+1)/(4*n)) * where, * r(n) -- output of preprocessing * u(n) -- input to preprocessing(actual Source buffer) * (b) Calculation of DCT2 using FFT is divided into three steps: * Step1: Re-ordering of even and odd elements of input. * Step2: Calculating FFT of the re-ordered input. * Step3: Taking the real part of the product of FFT output and weights. * (c) Post-processing - DCT4 can be obtained from DCT2 output using the following equation: * Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0) * where, * Y4 -- DCT4 output, Y2 -- DCT2 output * (d) Multiplying the output with the normalizing factor sqrt(2/N). */ /*-------- Pre-processing ------------*/ /* Multiplying input with cos factor i.e. r(n) = 2 * x(n) * cos(pi*(2*n+1)/(4*n)) */ arm_mult_q31(pInlineBuffer, cosFact, pInlineBuffer, S->N); arm_shift_q31(pInlineBuffer, 1, pInlineBuffer, S->N); /* ---------------------------------------------------------------- * Step1: Re-ordering of even and odd elements as * pState[i] = pInlineBuffer[2*i] and * pState[N-i-1] = pInlineBuffer[2*i+1] where i = 0 to N/2 ---------------------------------------------------------------------*/ /* pS1 initialized to pState */ pS1 = pState; /* pS2 initialized to pState+N-1, so that it points to the end of the state buffer */ pS2 = pState + (S->N - 1u); /* pbuff initialized to input buffer */ pbuff = pInlineBuffer; #if defined (ARM_MATH_DSP) /* Run the below code for Cortex-M4 and Cortex-M3 */ /* Initializing the loop counter to N/2 >> 2 for loop unrolling by 4 */ i = S->Nby2 >> 2u; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ do { /* Re-ordering of even and odd elements */ /* pState[i] = pInlineBuffer[2*i] */ *pS1++ = *pbuff++; /* pState[N-i-1] = pInlineBuffer[2*i+1] */ *pS2-- = *pbuff++; *pS1++ = *pbuff++; *pS2-- = *pbuff++; *pS1++ = *pbuff++; *pS2-- = *pbuff++; *pS1++ = *pbuff++; *pS2-- = *pbuff++; /* Decrement the loop counter */ i--; } while (i > 0u); /* pbuff initialized to input buffer */ pbuff = pInlineBuffer; /* pS1 initialized to pState */ pS1 = pState; /* Initializing the loop counter to N/4 instead of N for loop unrolling */ i = S->N >> 2u; /* Processing with loop unrolling 4 times as N is always multiple of 4. * Compute 4 outputs at a time */ do { /* Writing the re-ordered output back to inplace input buffer */ *pbuff++ = *pS1++; *pbuff++ = *pS1++; *pbuff++ = *pS1++; *pbuff++ = *pS1++; /* Decrement the loop counter */ i--; } while (i > 0u); /* --------------------------------------------------------- * Step2: Calculate RFFT for N-point input * ---------------------------------------------------------- */ /* pInlineBuffer is real input of length N , pState is the complex output of length 2N */ arm_rfft_q31(S->pRfft, pInlineBuffer, pState); /*---------------------------------------------------------------------- * Step3: Multiply the FFT output with the weights. *----------------------------------------------------------------------*/ arm_cmplx_mult_cmplx_q31(pState, weights, pState, S->N); /* The output of complex multiplication is in 3.29 format. * Hence changing the format of N (i.e. 2*N elements) complex numbers to 1.31 format by shifting left by 2 bits. */ arm_shift_q31(pState, 2, pState, S->N * 2); /* ----------- Post-processing ---------- */ /* DCT-IV can be obtained from DCT-II by the equation, * Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0) * Hence, Y4(0) = Y2(0)/2 */ /* Getting only real part from the output and Converting to DCT-IV */ /* Initializing the loop counter to N >> 2 for loop unrolling by 4 */ i = (S->N - 1u) >> 2u; /* pbuff initialized to input buffer. */ pbuff = pInlineBuffer; /* pS1 initialized to pState */ pS1 = pState; /* Calculating Y4(0) from Y2(0) using Y4(0) = Y2(0)/2 */ in = *pS1++ >> 1u; /* input buffer acts as inplace, so output values are stored in the input itself. */ *pbuff++ = in; /* pState pointer is incremented twice as the real values are located alternatively in the array */ pS1++; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ do { /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */ /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */ in = *pS1++ - in; *pbuff++ = in; /* points to the next real value */ pS1++; in = *pS1++ - in; *pbuff++ = in; pS1++; in = *pS1++ - in; *pbuff++ = in; pS1++; in = *pS1++ - in; *pbuff++ = in; pS1++; /* Decrement the loop counter */ i--; } while (i > 0u); /* If the blockSize is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ i = (S->N - 1u) % 0x4u; while (i > 0u) { /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */ /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */ in = *pS1++ - in; *pbuff++ = in; /* points to the next real value */ pS1++; /* Decrement the loop counter */ i--; } /*------------ Normalizing the output by multiplying with the normalizing factor ----------*/ /* Initializing the loop counter to N/4 instead of N for loop unrolling */ i = S->N >> 2u; /* pbuff initialized to the pInlineBuffer(now contains the output values) */ pbuff = pInlineBuffer; /* Processing with loop unrolling 4 times as N is always multiple of 4. Compute 4 outputs at a time */ do { /* Multiplying pInlineBuffer with the normalizing factor sqrt(2/N) */ in = *pbuff; *pbuff++ = ((q31_t) (((q63_t) in * S->normalize) >> 31)); in = *pbuff; *pbuff++ = ((q31_t) (((q63_t) in * S->normalize) >> 31)); in = *pbuff; *pbuff++ = ((q31_t) (((q63_t) in * S->normalize) >> 31)); in = *pbuff; *pbuff++ = ((q31_t) (((q63_t) in * S->normalize) >> 31)); /* Decrement the loop counter */ i--; } while (i > 0u); #else /* Run the below code for Cortex-M0 */ /* Initializing the loop counter to N/2 */ i = S->Nby2; do { /* Re-ordering of even and odd elements */ /* pState[i] = pInlineBuffer[2*i] */ *pS1++ = *pbuff++; /* pState[N-i-1] = pInlineBuffer[2*i+1] */ *pS2-- = *pbuff++; /* Decrement the loop counter */ i--; } while (i > 0u); /* pbuff initialized to input buffer */ pbuff = pInlineBuffer; /* pS1 initialized to pState */ pS1 = pState; /* Initializing the loop counter */ i = S->N; do { /* Writing the re-ordered output back to inplace input buffer */ *pbuff++ = *pS1++; /* Decrement the loop counter */ i--; } while (i > 0u); /* --------------------------------------------------------- * Step2: Calculate RFFT for N-point input * ---------------------------------------------------------- */ /* pInlineBuffer is real input of length N , pState is the complex output of length 2N */ arm_rfft_q31(S->pRfft, pInlineBuffer, pState); /*---------------------------------------------------------------------- * Step3: Multiply the FFT output with the weights. *----------------------------------------------------------------------*/ arm_cmplx_mult_cmplx_q31(pState, weights, pState, S->N); /* The output of complex multiplication is in 3.29 format. * Hence changing the format of N (i.e. 2*N elements) complex numbers to 1.31 format by shifting left by 2 bits. */ arm_shift_q31(pState, 2, pState, S->N * 2); /* ----------- Post-processing ---------- */ /* DCT-IV can be obtained from DCT-II by the equation, * Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0) * Hence, Y4(0) = Y2(0)/2 */ /* Getting only real part from the output and Converting to DCT-IV */ /* pbuff initialized to input buffer. */ pbuff = pInlineBuffer; /* pS1 initialized to pState */ pS1 = pState; /* Calculating Y4(0) from Y2(0) using Y4(0) = Y2(0)/2 */ in = *pS1++ >> 1u; /* input buffer acts as inplace, so output values are stored in the input itself. */ *pbuff++ = in; /* pState pointer is incremented twice as the real values are located alternatively in the array */ pS1++; /* Initializing the loop counter */ i = (S->N - 1u); while (i > 0u) { /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */ /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */ in = *pS1++ - in; *pbuff++ = in; /* points to the next real value */ pS1++; /* Decrement the loop counter */ i--; } /*------------ Normalizing the output by multiplying with the normalizing factor ----------*/ /* Initializing the loop counter */ i = S->N; /* pbuff initialized to the pInlineBuffer(now contains the output values) */ pbuff = pInlineBuffer; do { /* Multiplying pInlineBuffer with the normalizing factor sqrt(2/N) */ in = *pbuff; *pbuff++ = ((q31_t) (((q63_t) in * S->normalize) >> 31)); /* Decrement the loop counter */ i--; } while (i > 0u); #endif /* #if defined (ARM_MATH_DSP) */ } /** * @} end of DCT4_IDCT4 group */