/** * @file xmc_ccu4.h * @date 2017-04-27 * * @cond ********************************************************************************************************************* * XMClib v2.1.16 - XMC Peripheral Driver Library * * Copyright (c) 2015-2017, Infineon Technologies AG * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification,are permitted provided that the * following conditions are met: * * Redistributions of source code must retain the above copyright notice, this list of conditions and the following * disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided with the distribution. * * Neither the name of the copyright holders nor the names of its contributors may be used to endorse or promote * products derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY,OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * To improve the quality of the software, users are encouraged to share modifications, enhancements or bug fixes with * Infineon Technologies AG dave@infineon.com). ********************************************************************************************************************* * * Change History * -------------- * * 2015-02-20: * - Initial
* - Documentation updates
* * 2015-06-20: * - Removed version macros and declaration of GetDriverVersion API
* * 2015-07-22: * - XMC_CCU4_SLICE_ConfigureStatusBitOverrideEvent() is updated to support XMC14 device.
* * 2015-08-17: * - XMC_CCU4_SLICE_PRESCALER_t enum is added to set the prescaler divider.
* - XMC_CCU4_SLICE_SHADOW_TRANSFER_MODE_t enum item names are updated according to the guidelines.
* - XMC_CCU4_EnableShadowTransfer() API is made as inline, to improve the speed.
* * 2015-09-29: * - In XMC_CCU4_SLICE_EVENT_LEVEL_SENSITIVITY_t, two more enum items are added to support external count direction * settings. * * 2015-10-07: * - XMC_CCU4_SLICE_GetEvent() is made as inline. * - XMC_CCU4_SLICE_MULTI_IRQ_ID_t is added to support the XMC_CCU4_SLICE_EnableMultipleEvents() and * XMC_CCU4_SLICE_DisableMultipleEvents() APIs. * - DOC updates for the newly added APIs. * * 2016-03-09: * - Optimization of write only registers * * 2016-05-20: * - Added XMC_CCU4_SLICE_StopClearTimer() * - Changed implementation of XMC_CCU4_SLICE_StopTimer() and XMC_CCU4_SLICE_ClearTimer() to avoid RMW access * * 2017-04-27: * - XMC_CCU4_SLICE_SetPrescaler() changed div_val parameter to type XMC_CCU4_SLICE_PRESCALER_t * * @endcond */ #ifndef XMC_CCU4_H #define XMC_CCU4_H /********************************************************************************************************************* * HEADER FILES ********************************************************************************************************************/ #include "xmc_common.h" #if defined(CCU40) #if UC_FAMILY == XMC1 #include "xmc1_ccu4_map.h" #endif #if UC_FAMILY == XMC4 #include "xmc4_ccu4_map.h" #endif /** * @addtogroup XMClib XMC Peripheral Library * @{ */ /** * @addtogroup CCU4 * @brief Capture Compare Unit 4 (CCU4) low level driver for XMC family of microcontrollers
* * The CCU4 peripheral is a major component for systems that need general purpose timers for signal * monitoring/conditioning and Pulse Width Modulation (PWM) signal generation. Power electronic control systems like * switched mode power supplies or interruptible power supplies, can easily be implemented with the functions inside the * CCU4 peripheral.\n * Each CCU4 module is comprised of four identical 16 bit Capture/Compare Timer slices, CC4y (where y = [0..4]). Each * timer slice can work in compare mode or in capture mode. * * APIs provided in this file cover the following functional blocks of CCU4:\n * -- Timer configuration, Capture configuration, Function/Event configuration, Interrupt configuration\n * \par Note: * 1. SLICE (APIs prefixed with e.g. XMC_CCU4_SLICE_) * 2. Module (APIs are not having any prefix e.g. XMC_CCU4_) * * \par Timer(Compare mode) configuration: * This section of the LLD provides the configuration structure XMC_CCU4_SLICE_COMPARE_CONFIG_t and the initialization * function XMC_CCU4_SLICE_CompareInit(). * * It can be used to: * -# Start and Stop the timer. (XMC_CCU4_SLICE_StartTimer(), XMC_CCU4_SLICE_StopTimer()) * -# Update the period, compare, Dither, Prescaler and Passive values. (XMC_CCU4_SLICE_SetTimerPeriodMatch(), * XMC_CCU4_SLICE_SetTimerCompareMatch(), XMC_CCU4_SLICE_SetPrescaler(), XMC_CCU4_SLICE_SetDitherCompareValue(), * XMC_CCU4_SLICE_SetPassiveLevel()) * -# Enable the slices to support multichannel mode. (XMC_CCU4_SLICE_EnableMultiChannelMode()) * * \par Capture configuration: * This section of the LLD provides the configuration structure XMC_CCU4_SLICE_CAPTURE_CONFIG_t and the initialization * function XMC_CCU4_SLICE_CaptureInit(). * * It can be used to: * -# Configure the capture functionality. (XMC_CCU4_SLICE_Capture0Config(), XMC_CCU4_SLICE_Capture1Config()) * -# Read the captured values along with the status, which indicate the value is latest or not. * (XMC_CCU4_SLICE_GetCaptureRegisterValue()) * * \par Function/Event configuration: * This section of the LLD provides the configuration structure XMC_CCU4_SLICE_EVENT_CONFIG_t.\n * * It can be used to: * -# Enable and Disable the events. (XMC_CCU4_SLICE_EnableEvent(), XMC_CCU4_SLICE_DisableEvent()) * -# Configure to start and stop the timer on external events.(XMC_CCU4_SLICE_StartConfig(), XMC_CCU4_SLICE_StopConfig()) * -# Modulation, external load and Gating of the timer output.(XMC_CCU4_SLICE_ModulationConfig(), * XMC_CCU4_SLICE_LoadConfig(), XMC_CCU4_SLICE_GateConfig()) * -# Control the count direction of the timer based on the external event. (XMC_CCU4_SLICE_DirectionConfig()) * -# Count the external events.(XMC_CCU4_SLICE_CountConfig()) * -# External Trap. Which can be used as protective feature.(XMC_CCU4_SLICE_EnableTrap(), XMC_CCU4_SLICE_DisableTrap(), * XMC_CCU4_SLICE_TrapConfig()) * * \par Interrupt configuration: * This section of the LLD provides the function to configure the interrupt node to each event (XMC_CCU4_SLICE_SetInterruptNode()) * @{ */ /********************************************************************************************************************* * MACROS ********************************************************************************************************************/ /* Macro to check if the interrupt enum passed is valid */ #define XMC_CCU4_SLICE_CHECK_INTERRUPT(interrupt) \ ((interrupt == XMC_CCU4_SLICE_IRQ_ID_PERIOD_MATCH) || \ (interrupt == XMC_CCU4_SLICE_IRQ_ID_ONE_MATCH) || \ (interrupt == XMC_CCU4_SLICE_IRQ_ID_COMPARE_MATCH_UP) || \ (interrupt == XMC_CCU4_SLICE_IRQ_ID_COMPARE_MATCH_DOWN)|| \ (interrupt == XMC_CCU4_SLICE_IRQ_ID_EVENT0) || \ (interrupt == XMC_CCU4_SLICE_IRQ_ID_EVENT1) || \ (interrupt == XMC_CCU4_SLICE_IRQ_ID_EVENT2) || \ (interrupt == XMC_CCU4_SLICE_IRQ_ID_TRAP)) /********************************************************************************************************************* * ENUMS ********************************************************************************************************************/ /** * Typedef for CCU4 Global data structure */ typedef CCU4_GLOBAL_TypeDef XMC_CCU4_MODULE_t; /** * Typedef for CCU4 Slice data structure */ typedef CCU4_CC4_TypeDef XMC_CCU4_SLICE_t; /** * Return Value of an API */ typedef enum XMC_CCU4_STATUS { XMC_CCU4_STATUS_OK = 0U, /**< API fulfils request */ XMC_CCU4_STATUS_ERROR , /**< API cannot fulfil the request */ XMC_CCU4_STATUS_RUNNING , /**< The timer slice is currently running */ XMC_CCU4_STATUS_IDLE /**< The timer slice is currently idle */ } XMC_CCU4_STATUS_t; /** * CCU4 module clock */ typedef enum XMC_CCU4_CLOCK { XMC_CCU4_CLOCK_SCU = 0U, /**< Select the fCCU as the clock */ XMC_CCU4_CLOCK_EXTERNAL_A , /**< External clock-A */ XMC_CCU4_CLOCK_EXTERNAL_B , /**< External clock-B */ XMC_CCU4_CLOCK_EXTERNAL_C /**< External clock-C */ } XMC_CCU4_CLOCK_t; /** * CCU4 set the shadow transfer type for multichannel mode */ typedef enum XMC_CCU4_MULTI_CHANNEL_SHADOW_TRANSFER { XMC_CCU4_MULTI_CHANNEL_SHADOW_TRANSFER_SW_SLICE0 = (uint32_t)0x4000000, /**< Shadow transfer through software only for slice 0*/ XMC_CCU4_MULTI_CHANNEL_SHADOW_TRANSFER_SW_MCSS_SLICE0 = (uint32_t)0x4000400, /**< Shadow transfer through software and hardware for slice 0 */ XMC_CCU4_MULTI_CHANNEL_SHADOW_TRANSFER_SW_SLICE1 = (uint32_t)0x8000000, /**< Shadow transfer through software only for slice 1*/ XMC_CCU4_MULTI_CHANNEL_SHADOW_TRANSFER_SW_MCSS_SLICE1 = (uint32_t)0x8000800, /**< Shadow transfer through software and hardware for slice 1 */ XMC_CCU4_MULTI_CHANNEL_SHADOW_TRANSFER_SW_SLICE2 = (uint32_t)0x10000000, /**< Shadow transfer through software only for slice 2 */ XMC_CCU4_MULTI_CHANNEL_SHADOW_TRANSFER_SW_MCSS_SLICE2 = (uint32_t)0x10001000, /**< Shadow transfer through software and hardware for slice 2 */ XMC_CCU4_MULTI_CHANNEL_SHADOW_TRANSFER_SW_SLICE3 = (uint32_t)0x20000000, /**< Shadow transfer through software only for slice 3*/ XMC_CCU4_MULTI_CHANNEL_SHADOW_TRANSFER_SW_MCSS_SLICE3 = (uint32_t)0x20002000 /**< Shadow transfer through software and hardware for slice 3 */ } XMC_CCU4_MULTI_CHANNEL_SHADOW_TRANSFER_t; /** * Operational modes of CCU4 slice */ typedef enum XMC_CCU4_SLICE_MODE { XMC_CCU4_SLICE_MODE_COMPARE = 0U, /**< slice(CC4y) operates in Compare Mode */ XMC_CCU4_SLICE_MODE_CAPTURE /**< slice(CC4y) operates in Capture Mode */ } XMC_CCU4_SLICE_MODE_t; /** * Timer counting modes for the slice */ typedef enum XMC_CCU4_SLICE_TIMER_COUNT_MODE { XMC_CCU4_SLICE_TIMER_COUNT_MODE_EA = 0U, /**< Edge Aligned Mode */ XMC_CCU4_SLICE_TIMER_COUNT_MODE_CA /**< Center Aligned Mode */ } XMC_CCU4_SLICE_TIMER_COUNT_MODE_t; /** * Timer repetition mode for the slice */ typedef enum XMC_CCU4_SLICE_TIMER_REPEAT_MODE { XMC_CCU4_SLICE_TIMER_REPEAT_MODE_REPEAT = 0U, /**< Repetitive mode: continuous mode of operation */ XMC_CCU4_SLICE_TIMER_REPEAT_MODE_SINGLE /**< Single shot mode: Once a Period match/One match occurs timer goes to idle state */ } XMC_CCU4_SLICE_TIMER_REPEAT_MODE_t; /** * Timer counting direction for the CCU4 slice */ typedef enum XMC_CCU4_SLICE_TIMER_COUNT_DIR { XMC_CCU4_SLICE_TIMER_COUNT_DIR_UP = 0U, /**< Counting up */ XMC_CCU4_SLICE_TIMER_COUNT_DIR_DOWN /**< Counting down */ } XMC_CCU4_SLICE_TIMER_COUNT_DIR_t; /** * Capture mode register sets */ typedef enum XMC_CCU4_SLICE_CAP_REG_SET { XMC_CCU4_SLICE_CAP_REG_SET_LOW = 0U, /**< Capture register-0, Capture register-1 used */ XMC_CCU4_SLICE_CAP_REG_SET_HIGH /**< Capture register-2, Capture register-3 used */ } XMC_CCU4_SLICE_CAP_REG_SET_t; /** * Prescaler mode */ typedef enum XMC_CCU4_SLICE_PRESCALER_MODE { XMC_CCU4_SLICE_PRESCALER_MODE_NORMAL = 0U, /**< Fixed division of module clock */ XMC_CCU4_SLICE_PRESCALER_MODE_FLOAT /**< Floating divider. */ } XMC_CCU4_SLICE_PRESCALER_MODE_t; /** * Timer output passive level */ typedef enum XMC_CCU4_SLICE_OUTPUT_PASSIVE_LEVEL { XMC_CCU4_SLICE_OUTPUT_PASSIVE_LEVEL_LOW = 0U, /**< Passive level = Low */ XMC_CCU4_SLICE_OUTPUT_PASSIVE_LEVEL_HIGH /**< Passive level = High */ } XMC_CCU4_SLICE_OUTPUT_PASSIVE_LEVEL_t; /** * Timer clock Divider */ typedef enum XMC_CCU4_SLICE_PRESCALER { XMC_CCU4_SLICE_PRESCALER_1 = 0U, /**< Slice Clock = fccu4 */ XMC_CCU4_SLICE_PRESCALER_2 , /**< Slice Clock = fccu4/2 */ XMC_CCU4_SLICE_PRESCALER_4 , /**< Slice Clock = fccu4/4 */ XMC_CCU4_SLICE_PRESCALER_8 , /**< Slice Clock = fccu4/8 */ XMC_CCU4_SLICE_PRESCALER_16 , /**< Slice Clock = fccu4/16 */ XMC_CCU4_SLICE_PRESCALER_32 , /**< Slice Clock = fccu4/32 */ XMC_CCU4_SLICE_PRESCALER_64 , /**< Slice Clock = fccu4/64 */ XMC_CCU4_SLICE_PRESCALER_128 , /**< Slice Clock = fccu4/128 */ XMC_CCU4_SLICE_PRESCALER_256 , /**< Slice Clock = fccu4/256 */ XMC_CCU4_SLICE_PRESCALER_512 , /**< Slice Clock = fccu4/512 */ XMC_CCU4_SLICE_PRESCALER_1024 , /**< Slice Clock = fccu4/1024 */ XMC_CCU4_SLICE_PRESCALER_2048 , /**< Slice Clock = fccu4/2048 */ XMC_CCU4_SLICE_PRESCALER_4096 , /**< Slice Clock = fccu4/4096 */ XMC_CCU4_SLICE_PRESCALER_8192 , /**< Slice Clock = fccu4/8192 */ XMC_CCU4_SLICE_PRESCALER_16384 , /**< Slice Clock = fccu4/16384 */ XMC_CCU4_SLICE_PRESCALER_32768 /**< Slice Clock = fccu4/32768 */ } XMC_CCU4_SLICE_PRESCALER_t; /** * External Function list */ typedef enum XMC_CCU4_SLICE_FUNCTION { XMC_CCU4_SLICE_FUNCTION_START = 0U, /**< Start function */ XMC_CCU4_SLICE_FUNCTION_STOP , /**< Stop function */ XMC_CCU4_SLICE_FUNCTION_CAPTURE_EVENT0 , /**< Capture Event-0 function, CCycapt0 signal is used for event generation */ XMC_CCU4_SLICE_FUNCTION_CAPTURE_EVENT1 , /**< Capture Event-1 function, CCycapt1 signal is used for event generation */ XMC_CCU4_SLICE_FUNCTION_GATING , /**< Gating function */ XMC_CCU4_SLICE_FUNCTION_DIRECTION , /**< Direction function */ XMC_CCU4_SLICE_FUNCTION_LOAD , /**< Load function */ XMC_CCU4_SLICE_FUNCTION_COUNT , /**< Counting function */ XMC_CCU4_SLICE_FUNCTION_OVERRIDE , /**< Override function */ XMC_CCU4_SLICE_FUNCTION_MODULATION , /**< Modulation function */ XMC_CCU4_SLICE_FUNCTION_TRAP /**< Trap function */ } XMC_CCU4_SLICE_FUNCTION_t; /** * External Event list */ typedef enum XMC_CCU4_SLICE_EVENT { XMC_CCU4_SLICE_EVENT_NONE = 0U, /**< None */ XMC_CCU4_SLICE_EVENT_0 , /**< Event-0 */ XMC_CCU4_SLICE_EVENT_1 , /**< Event-1 */ XMC_CCU4_SLICE_EVENT_2 /**< Event-2 */ } XMC_CCU4_SLICE_EVENT_t; /** * External Event trigger criteria - Edge sensitivity */ typedef enum XMC_CCU4_SLICE_EVENT_EDGE_SENSITIVITY { XMC_CCU4_SLICE_EVENT_EDGE_SENSITIVITY_NONE = 0U, /**< None */ XMC_CCU4_SLICE_EVENT_EDGE_SENSITIVITY_RISING_EDGE , /**< Rising Edge of the input signal generates event trigger*/ XMC_CCU4_SLICE_EVENT_EDGE_SENSITIVITY_FALLING_EDGE , /**< Falling Edge of the input signal generates event trigger */ XMC_CCU4_SLICE_EVENT_EDGE_SENSITIVITY_DUAL_EDGE /**< Both Rising and Falling edges cause an event trigger*/ } XMC_CCU4_SLICE_EVENT_EDGE_SENSITIVITY_t; /** * External Event trigger criteria - Level sensitivity */ typedef enum XMC_CCU4_SLICE_EVENT_LEVEL_SENSITIVITY { XMC_CCU4_SLICE_EVENT_LEVEL_SENSITIVITY_ACTIVE_HIGH = 0U, /**< Level sensitive functions react to a high signal level*/ XMC_CCU4_SLICE_EVENT_LEVEL_SENSITIVITY_ACTIVE_LOW = 1U, /**< Level sensitive functions react to a low signal level*/ /* Below enum items can be utilised specific to the functionality */ XMC_CCU4_SLICE_EVENT_LEVEL_SENSITIVITY_COUNT_UP_ON_LOW = 0U, /**< Timer counts up, during Low state of the control signal */ XMC_CCU4_SLICE_EVENT_LEVEL_SENSITIVITY_COUNT_UP_ON_HIGH = 1U /**< Timer counts up, during High state of the control signal */ } XMC_CCU4_SLICE_EVENT_LEVEL_SENSITIVITY_t; /** * Low pass filter Configuration. The External Event input should be stable for a selected number of clock cycles. */ typedef enum XMC_CCU4_SLICE_EVENT_FILTER { XMC_CCU4_SLICE_EVENT_FILTER_DISABLED = 0U, /**< No Low Pass Filter */ XMC_CCU4_SLICE_EVENT_FILTER_3_CYCLES , /**< 3 clock cycles */ XMC_CCU4_SLICE_EVENT_FILTER_5_CYCLES , /**< 5 clock cycles */ XMC_CCU4_SLICE_EVENT_FILTER_7_CYCLES /**< 7 clock cycles */ } XMC_CCU4_SLICE_EVENT_FILTER_t; /** * External Event Input list. This list depicts the possible input connections to the CCU4 slice. * Interconnects are specific to each device. */ typedef uint8_t XMC_CCU4_SLICE_INPUT_t; /** * Actions that can be performed upon detection of an external Timer STOP event */ typedef enum XMC_CCU4_SLICE_END_MODE { XMC_CCU4_SLICE_END_MODE_TIMER_STOP = 0U, /**< Stops the timer, without clearing TIMER register */ XMC_CCU4_SLICE_END_MODE_TIMER_CLEAR , /**< Without stopping timer, clears the TIMER register */ XMC_CCU4_SLICE_END_MODE_TIMER_STOP_CLEAR /**< Stops the timer and clears the TIMER register */ } XMC_CCU4_SLICE_END_MODE_t; /** * Actions that can be performed upon detection of an external Timer START event */ typedef enum XMC_CCU4_SLICE_START_MODE { XMC_CCU4_SLICE_START_MODE_TIMER_START = 0U, /**< Start the timer from the current count of TIMER register */ XMC_CCU4_SLICE_START_MODE_TIMER_START_CLEAR /**< Clears the TIMER register and start the timer */ } XMC_CCU4_SLICE_START_MODE_t; /** * Modulation of timer output signals */ typedef enum XMC_CCU4_SLICE_MODULATION_MODE { XMC_CCU4_SLICE_MODULATION_MODE_CLEAR_ST_OUT = 0U, /**< Clear ST and OUT signals */ XMC_CCU4_SLICE_MODULATION_MODE_CLEAR_OUT /**< Clear only the OUT signal */ } XMC_CCU4_SLICE_MODULATION_MODE_t; /** * Trap exit mode */ typedef enum XMC_CCU4_SLICE_TRAP_EXIT_MODE { XMC_CCU4_SLICE_TRAP_EXIT_MODE_AUTOMATIC = 0U, /**< Clear trap state as soon as the trap signal is de-asserted */ XMC_CCU4_SLICE_TRAP_EXIT_MODE_SW /**< Clear only when acknowledged by software */ } XMC_CCU4_SLICE_TRAP_EXIT_MODE_t; /** * Timer clear on capture */ typedef enum XMC_CCU4_SLICE_TIMER_CLEAR_MODE { XMC_CCU4_SLICE_TIMER_CLEAR_MODE_NEVER = 0U, /**< Never clear the timer on any capture event */ XMC_CCU4_SLICE_TIMER_CLEAR_MODE_CAP_HIGH , /**< Clear only when timer value has been captured in C3V and C2V */ XMC_CCU4_SLICE_TIMER_CLEAR_MODE_CAP_LOW , /**< Clear only when timer value has been captured in C1V and C0V */ XMC_CCU4_SLICE_TIMER_CLEAR_MODE_ALWAYS /**< Always clear the timer upon detection of any capture event */ } XMC_CCU4_SLICE_TIMER_CLEAR_MODE_t; /** * Multi Channel Shadow transfer request configuration options */ typedef enum XMC_CCU4_SLICE_MCMS_ACTION { XMC_CCU4_SLICE_MCMS_ACTION_TRANSFER_PR_CR = 0U, /**< Transfer Compare and Period Shadow register values to the actual registers upon MCS xfer request */ XMC_CCU4_SLICE_MCMS_ACTION_TRANSFER_PR_CR_PCMP = 1U, /**< Transfer Compare, Period and Prescaler Compare Shadow register values to the actual registers upon MCS xfer request */ XMC_CCU4_SLICE_MCMS_ACTION_TRANSFER_PR_CR_PCMP_DIT = 3U /**< Transfer Compare, Period ,Prescaler Compare and Dither Compare register values to the actual registers upon MCS xfer request */ } XMC_CCU4_SLICE_MCMS_ACTION_t; /** * Available Interrupt Event Ids */ typedef enum XMC_CCU4_SLICE_IRQ_ID { XMC_CCU4_SLICE_IRQ_ID_PERIOD_MATCH = 0U , /**< Period match counting up */ XMC_CCU4_SLICE_IRQ_ID_ONE_MATCH = 1U , /**< Period match -> One match counting down */ XMC_CCU4_SLICE_IRQ_ID_COMPARE_MATCH_UP = 2U , /**< Compare match counting up */ XMC_CCU4_SLICE_IRQ_ID_COMPARE_MATCH_DOWN = 3U , /**< Compare match counting down */ XMC_CCU4_SLICE_IRQ_ID_EVENT0 = 8U , /**< Event-0 occurrence */ XMC_CCU4_SLICE_IRQ_ID_EVENT1 = 9U , /**< Event-1 occurrence */ XMC_CCU4_SLICE_IRQ_ID_EVENT2 = 10U, /**< Event-2 occurrence */ XMC_CCU4_SLICE_IRQ_ID_TRAP = 11U /**< Trap occurrence */ } XMC_CCU4_SLICE_IRQ_ID_t; /** * Available Interrupt Event Ids, which is added to support multi event APIs */ typedef enum XMC_CCU4_SLICE_MULTI_IRQ_ID { XMC_CCU4_SLICE_MULTI_IRQ_ID_PERIOD_MATCH = 0x1U, /**< Period match counting up */ XMC_CCU4_SLICE_MULTI_IRQ_ID_ONE_MATCH = 0x2U, /**< Period match -> One match counting down */ XMC_CCU4_SLICE_MULTI_IRQ_ID_COMPARE_MATCH_UP = 0x4U, /**< Compare match counting up */ XMC_CCU4_SLICE_MULTI_IRQ_ID_COMPARE_MATCH_DOWN = 0x8U, /**< Compare match counting down */ XMC_CCU4_SLICE_MULTI_IRQ_ID_EVENT0 = 0x100U, /**< Event-0 occurrence */ XMC_CCU4_SLICE_MULTI_IRQ_ID_EVENT1 = 0x200U, /**< Event-1 occurrence */ XMC_CCU4_SLICE_MULTI_IRQ_ID_EVENT2 = 0x400U, /**< Event-2 occurrence */ } XMC_CCU4_SLICE_MULTI_IRQ_ID_t; /** * Service Request Lines for CCU4. Event are mapped to these SR lines and these are used to generate the interrupt. */ typedef enum XMC_CCU4_SLICE_SR_ID { XMC_CCU4_SLICE_SR_ID_0 = 0U, /**< Service Request Line-0 selected */ XMC_CCU4_SLICE_SR_ID_1 , /**< Service Request Line-1 selected */ XMC_CCU4_SLICE_SR_ID_2 , /**< Service Request Line-2 selected */ XMC_CCU4_SLICE_SR_ID_3 /**< Service Request Line-3 selected */ } XMC_CCU4_SLICE_SR_ID_t; /** * Slice shadow transfer options. */ typedef enum XMC_CCU4_SHADOW_TRANSFER { XMC_CCU4_SHADOW_TRANSFER_SLICE_0 = CCU4_GCSS_S0SE_Msk, /**< Transfer Period, Compare and Passive Level shadow register values to actual registers for SLICE-0 */ XMC_CCU4_SHADOW_TRANSFER_DITHER_SLICE_0 = CCU4_GCSS_S0DSE_Msk, /**< Transfer Dither compare shadow register value to actual register for SLICE-0 */ XMC_CCU4_SHADOW_TRANSFER_PRESCALER_SLICE_0 = CCU4_GCSS_S0PSE_Msk, /**< Transfer Prescaler shadow register value to actual register for SLICE-0 */ XMC_CCU4_SHADOW_TRANSFER_SLICE_1 = CCU4_GCSS_S1SE_Msk, /**< Transfer Period, Compare and Passive Level shadow register values to actual registers for SLICE-1 */ XMC_CCU4_SHADOW_TRANSFER_DITHER_SLICE_1 = CCU4_GCSS_S1DSE_Msk, /**< Transfer Dither compare shadow register value to actual registers for SLICE-1 */ XMC_CCU4_SHADOW_TRANSFER_PRESCALER_SLICE_1 = CCU4_GCSS_S1PSE_Msk, /**< Transfer Prescaler shadow register value to actual register for SLICE-1 */ XMC_CCU4_SHADOW_TRANSFER_SLICE_2 = CCU4_GCSS_S2SE_Msk, /**< Transfer Period, Compare and Passive Level shadow register values to actual registers for SLICE-2 */ XMC_CCU4_SHADOW_TRANSFER_DITHER_SLICE_2 = CCU4_GCSS_S2DSE_Msk, /**< Transfer Dither compare shadow register value to actual register for SLICE-2 */ XMC_CCU4_SHADOW_TRANSFER_PRESCALER_SLICE_2 = CCU4_GCSS_S2PSE_Msk, /**< Transfer Prescaler shadow register value to actual register for SLICE-2 */ XMC_CCU4_SHADOW_TRANSFER_SLICE_3 = CCU4_GCSS_S3SE_Msk, /**< Transfer Period, Compare and Passive Level shadow register values to actual registers for SLICE-3 */ XMC_CCU4_SHADOW_TRANSFER_DITHER_SLICE_3 = CCU4_GCSS_S3DSE_Msk, /**< Transfer Dither compare shadow register value to actual register for SLICE-3 */ XMC_CCU4_SHADOW_TRANSFER_PRESCALER_SLICE_3 = CCU4_GCSS_S3PSE_Msk /**< Transfer Prescaler shadow register value to actual register for SLICE-3 */ } XMC_CCU4_SHADOW_TRANSFER_t; #if defined(CCU4V3) || defined(DOXYGEN)/* Defined for XMC1400 devices only */ /** * Slice shadow transfer mode options. * @note Only available for XMC1400 series */ typedef enum XMC_CCU4_SLICE_SHADOW_TRANSFER_MODE { XMC_CCU4_SLICE_SHADOW_TRANSFER_MODE_IN_PERIOD_MATCH_AND_ONE_MATCH = 0U, /**< Shadow transfer is done in Period Match and One match. */ XMC_CCU4_SLICE_SHADOW_TRANSFER_MODE_ONLY_IN_PERIOD_MATCH = 1U, /**< Shadow transfer is done only in Period Match. */ XMC_CCU4_SLICE_SHADOW_TRANSFER_MODE_ONLY_IN_ONE_MATCH = 2U /**< Shadow transfer is done only in One Match. */ } XMC_CCU4_SLICE_SHADOW_TRANSFER_MODE_t; /** * Immediate write into configuration register * @note Only available for XMC1400 series */ typedef enum XMC_CCU4_SLICE_WRITE_INTO { XMC_CCU4_SLICE_WRITE_INTO_PERIOD_CONFIGURATION = CCU4_CC4_STC_IRPC_Msk, /**< Immediate or Coherent Write into Period Configuration */ XMC_CCU4_SLICE_WRITE_INTO_COMPARE_CONFIGURATION = CCU4_CC4_STC_IRCC_Msk, /**< Immediate or Coherent Write into Compare Configuration */ XMC_CCU4_SLICE_WRITE_INTO_PASSIVE_LEVEL_CONFIGURATION = CCU4_CC4_STC_IRLC_Msk, /**< Immediate or Coherent Write into Passive Level Configuration */ XMC_CCU4_SLICE_WRITE_INTO_DITHER_VALUE_CONFIGURATION = CCU4_CC4_STC_IRDC_Msk, /**< Immediate or Coherent Write into Dither Value Configuration */ XMC_CCU4_SLICE_WRITE_INTO_FLOATING_PRESCALER_VALUE_CONFIGURATION = CCU4_CC4_STC_IRFC_Msk /**< Immediate or Coherent Write into Floating Prescaler Value Configuration */ } XMC_CCU4_SLICE_WRITE_INTO_t; /** * Automatic Shadow Transfer request when writing into shadow register * @note Only available for XMC1400 series */ typedef enum XMC_CCU4_SLICE_AUTOMAIC_SHADOW_TRANSFER_WRITE_INTO { XMC_CCU4_SLICE_AUTOMAIC_SHADOW_TRANSFER_WRITE_INTO_PERIOD_SHADOW = CCU4_CC4_STC_ASPC_Msk, /**< Automatic Shadow Transfer request when writing into Period Shadow Register */ XMC_CCU4_SLICE_AUTOMAIC_SHADOW_TRANSFER_WRITE_INTO_COMPARE_SHADOW = CCU4_CC4_STC_ASCC_Msk, /**< Automatic Shadow transfer request when writing into Compare Shadow Register */ XMC_CCU4_SLICE_AUTOMAIC_SHADOW_TRANSFER_WRITE_INTO_PASSIVE_LEVEL = CCU4_CC4_STC_ASLC_Msk, /**< Automatic Shadow transfer request when writing into Passive Level Register*/ XMC_CCU4_SLICE_AUTOMAIC_SHADOW_TRANSFER_WRITE_INTO_DITHER_SHADOW = CCU4_CC4_STC_ASDC_Msk, /**< Automatic Shadow transfer request when writing into Dither Shadow Register */ XMC_CCU4_SLICE_AUTOMAIC_SHADOW_TRANSFER_WRITE_INTO_FLOATING_PRESCALER_SHADOW = CCU4_CC4_STC_ASFC_Msk /**< Automatic Shadow transfer request when writing into Floating Prescaler Shadow register */ } XMC_CCU4_SLICE_AUTOMAIC_SHADOW_TRANSFER_WRITE_INTO_t; #endif /** * Used to create Mask needed for Multi-channel Shadow transfer enable/disable */ typedef enum XMC_CCU4_SLICE_MASK { XMC_CCU4_SLICE_MASK_SLICE_0 = 1U , /**< SLICE-0 */ XMC_CCU4_SLICE_MASK_SLICE_1 = 2U , /**< SLICE-1 */ XMC_CCU4_SLICE_MASK_SLICE_2 = 4U , /**< SLICE-2 */ XMC_CCU4_SLICE_MASK_SLICE_3 = 8U /**< SLICE-3 */ } XMC_CCU4_SLICE_MASK_t; /********************************************************************************************************************* * DATA STRUCTURES ********************************************************************************************************************/ /** * Configuration data structure of an External Event(Event-0/1/2). * Needed to configure the various aspects of an External Event. * This structure will not connect the external event with an external function. */ typedef struct XMC_CCU4_SLICE_EVENT_CONFIG { XMC_CCU4_SLICE_INPUT_t mapped_input; /**< Required input signal for the Event */ XMC_CCU4_SLICE_EVENT_EDGE_SENSITIVITY_t edge; /**< Select the event edge of the input signal. This is needed for an edge sensitive External function.*/ XMC_CCU4_SLICE_EVENT_LEVEL_SENSITIVITY_t level; /**< Select the event level of the input signal. This is needed for an level sensitive External function.*/ XMC_CCU4_SLICE_EVENT_FILTER_t duration; /**< Low Pass filter duration in terms of fCCU clock cycles */ } XMC_CCU4_SLICE_EVENT_CONFIG_t; /*Anonymous structure/union guard start*/ #if defined(__CC_ARM) #pragma push #pragma anon_unions #elif defined(__TASKING__) #pragma warning 586 #endif /** * Configuration data structure for CCU4 slice. Specifically configures the CCU4 slice to compare mode operation. * This excludes event and function configuration. */ typedef struct XMC_CCU4_SLICE_COMPARE_CONFIG { union { struct { uint32_t timer_mode : 1; /**< Edge aligned or Centre Aligned. Accepts enum ::XMC_CCU4_SLICE_TIMER_COUNT_MODE_t */ uint32_t monoshot : 1; /**< Single shot or Continuous mode . Accepts enum :: XMC_CCU4_SLICE_TIMER_REPEAT_MODE_t*/ uint32_t shadow_xfer_clear : 1; /**< Should PR and CR shadow xfer happen when timer is cleared? */ uint32_t : 10; uint32_t dither_timer_period: 1; /**< Can the period of the timer dither? */ uint32_t dither_duty_cycle : 1; /**< Can the compare match of the timer dither? */ uint32_t : 1; uint32_t prescaler_mode: 1; /**< Normal or floating prescaler mode. Accepts enum :: XMC_CCU4_SLICE_PRESCALER_MODE_t*/ uint32_t : 8; uint32_t mcm_enable : 1; /**< Multi-Channel mode enable? */ uint32_t : 6; }; uint32_t tc; }; uint32_t prescaler_initval : 4; /**< Initial prescaler divider value Accepts enum :: XMC_CCU4_SLICE_PRESCALER_t */ uint32_t float_limit : 4; /**< The max value which the prescaler divider can increment to */ uint32_t dither_limit : 4; /**< The value that determines the spreading of dithering */ uint32_t passive_level : 1; /**< Configuration of ST and OUT passive levels. Accepts enum :: XMC_CCU4_SLICE_OUTPUT_PASSIVE_LEVEL_t*/ uint32_t timer_concatenation : 1; /**< Enables the concatenation of the timer if true.*/ } XMC_CCU4_SLICE_COMPARE_CONFIG_t; /** * Configuration data structure for CCU4 slice. Specifically configures the CCU4 slice to capture mode operation. * This excludes event and function configuration. */ typedef struct XMC_CCU4_SLICE_CAPTURE_CONFIG { union { struct { uint32_t : 4; uint32_t fifo_enable : 1; /**< Should the capture registers be setup as a FIFO?(Extended capture mode)*/ uint32_t timer_clear_mode : 2; /**< How should the timer register be cleared upon detection of capture event? Accepts enum ::XMC_CCU4_SLICE_TIMER_CLEAR_MODE_t*/ uint32_t : 4; uint32_t same_event : 1; /**< Should the capture event for C1V/C0V and C3V/C2V be same capture edge? */ uint32_t ignore_full_flag : 1; /**< Should updates to capture registers follow full flag rules? */ uint32_t : 3; uint32_t prescaler_mode: 1; /**< Normal or floating prescaler Accepts enum :: XMC_CCU4_SLICE_PRESCALER_MODE_t*/ uint32_t : 15; }; uint32_t tc; }; uint32_t prescaler_initval : 4; /**< Prescaler divider value */ uint32_t float_limit : 4; /**< The max value which the prescaler divider can increment to */ uint32_t timer_concatenation : 1; /**< Enables the concatenation of the timer */ } XMC_CCU4_SLICE_CAPTURE_CONFIG_t; /*Anonymous structure/union guard end*/ #if defined(__CC_ARM) #pragma pop #elif defined(__TASKING__) #pragma warning restore #endif /********************************************************************************************************************* * API Prototypes ********************************************************************************************************************/ #ifdef __cplusplus extern "C" { #endif __STATIC_INLINE bool XMC_CCU4_IsValidModule(const XMC_CCU4_MODULE_t *const module) { bool tmp = false; tmp = (module == CCU40); #if defined(CCU41) tmp = tmp || (module == CCU41); #endif #if defined(CCU42) tmp = tmp || (module == CCU42); #endif #if defined(CCU43) tmp = tmp || (module == CCU43); #endif return tmp; } __STATIC_INLINE bool XMC_CCU4_IsValidSlice(const XMC_CCU4_SLICE_t *const slice) { bool tmp = false; tmp = (slice == CCU40_CC40); #if defined(CCU40_CC41) tmp = tmp || (slice == CCU40_CC41); #endif #if defined(CCU40_CC42) tmp = tmp || (slice == CCU40_CC42); #endif #if defined(CCU40_CC43) tmp = tmp || (slice == CCU40_CC43); #endif #if defined(CCU41) tmp = tmp || (slice == CCU41_CC40); #if defined(CCU41_CC41) tmp = tmp || (slice == CCU41_CC41); #endif #if defined(CCU41_CC42) tmp = tmp || (slice == CCU41_CC42); #endif #if defined(CCU41_CC43) tmp = tmp || (slice == CCU41_CC43); #endif #endif #if defined(CCU42) tmp = tmp || (slice == CCU42_CC40); #if defined(CCU42_CC41) tmp = tmp || (slice == CCU42_CC41); #endif #if defined(CCU42_CC42) tmp = tmp || (slice == CCU42_CC42); #endif #if defined(CCU42_CC43) tmp = tmp || (slice == CCU42_CC43); #endif #endif #if defined(CCU43) tmp = tmp || (slice == CCU43_CC40); #if defined(CCU43_CC41) tmp = tmp || (slice == CCU43_CC41); #endif #if defined(CCU43_CC42) tmp = tmp || (slice == CCU43_CC42); #endif #if defined(CCU43_CC43) tmp = tmp || (slice == CCU43_CC43); #endif #endif return tmp; } /** * @param module Constant pointer to CCU4 module * @param mcs_action multi-channel shadow transfer request configuration * @return
* None
* * \parDescription:
* Initialization of global register GCTRL.
\n * As part of module initialization, behaviour of the module upon detection * Multi-Channel Mode trigger is configured. Will also invoke the XMC_CCU4_EnableModule(). * The API call would bring up the required CCU4 module and also initialize the module for * the required multi-channel shadow transfer. * * \parRelated APIs:
* XMC_CCU4_SLICE_CompareInit()
XMC_CCU4_SLICE_CaptureInit(). */ void XMC_CCU4_Init(XMC_CCU4_MODULE_t *const module, const XMC_CCU4_SLICE_MCMS_ACTION_t mcs_action); /** * @param module Constant pointer to CCU4 module * @param clock Choice of input clock to the module * @return
* None
* * \parDescription:
* Selects the Module Clock by configuring GCTRL.PCIS bits.
\n * There are 3 potential clock sources. This API helps to select the required clock source. * Call to this API is valid after the XMC_CCU4_Init(). * * \parRelated APIs:
* None.
*/ void XMC_CCU4_SetModuleClock(XMC_CCU4_MODULE_t *const module, const XMC_CCU4_CLOCK_t clock); /** * @param module Constant pointer to CCU4 module * @return
* None
* * \parDescription:
* Enables the CCU4 module and brings it to active state.
\n * Also disables the gating of the clock signal (if applicable depending on the device being selected). * Invoke this API before any operations are done on the CCU4 module. Invoked from XMC_CCU4_Init(). * * \parRelated APIs:
* XMC_CCU4_SetModuleClock()
XMC_CCU4_DisableModule()
XMC_CCU4_StartPrescaler(). */ void XMC_CCU4_EnableModule(XMC_CCU4_MODULE_t *const module); /** * @param module Constant pointer to CCU4 module * @return
* None
* * \parDescription:
* Brings the CCU4 module to reset state and enables gating of the clock signal(if applicable depending * on the device being selected).
\n * Invoke this API when a CCU4 module needs to be disabled completely. * Any operation on the CCU4 module will have no effect after this API is called. * * \parRelated APIs:
* XMC_CCU4_EnableModule()
XMC_CCU4_DisableModule(). */ void XMC_CCU4_DisableModule(XMC_CCU4_MODULE_t *const module); /** * @param module Constant pointer to CCU4 module * @return
* None
* * \parDescription:
* Starts the prescaler and restores clocks to the timer slices, by setting GIDLC.SPRB bit.
\n * Once the input to the prescaler has been chosen and the prescaler divider of all slices programmed, * the prescaler itself may be started. Invoke this API after XMC_CCU4_Init() * (Mandatory to fully initialize the module).Directly accessed register is GIDLC. * * \parRelated APIs:
* XMC_CCU4_Init()
XMC_CCU4_EnableClock()
XMC_CCU4_DisableClock()
XMC_CCU4_StartPrescaler()
* XMC_CCU4_StopPrescaler(). */ __STATIC_INLINE void XMC_CCU4_StartPrescaler(XMC_CCU4_MODULE_t *const module) { XMC_ASSERT("XMC_CCU4_StartPrescaler:Invalid Module Pointer", XMC_CCU4_IsValidModule(module)); module->GIDLC |= (uint32_t) CCU4_GIDLC_SPRB_Msk; } /** * @param module Constant pointer to CCU4 module * @return
* None
* * \parDescription:
* Stops the prescaler and blocks clocks to the timer slices, by setting GIDLS.CPRB bit.
\n * Opposite of the StartPrescaler routine. * Clears the run bit of the prescaler. Ensures that the module clock is not supplied to * the slices of the module.Registers directly accessed is GIDLS. * * \parRelated APIs:
* XMC_CCU4_EnableClock()
XMC_CCU4_DisableClock()
XMC_CCU4_StartPrescaler()
XMC_CCU4_StopPrescaler(). */ __STATIC_INLINE void XMC_CCU4_StopPrescaler(XMC_CCU4_MODULE_t *const module) { XMC_ASSERT("XMC_CCU4_StopPrescaler:Invalid Module Pointer", XMC_CCU4_IsValidModule(module)); module->GIDLS |= (uint32_t) CCU4_GIDLS_CPRB_Msk; } /** * @param module Constant pointer to CCU4 module * @return
* None
* * \parDescription:
* Returns the state of the prescaler, by reading GSTAT.PRB bit.
\n * This will return true if the prescaler is running. If clock is being supplied to the slices of the * module then returns as true. * * \parRelated APIs:
* XMC_CCU4_StartPrescaler()
XMC_CCU4_StopPrescaler()
XMC_CCU4_EnableClock()
XMC_CCU4_DisableClock(). */ __STATIC_INLINE bool XMC_CCU4_IsPrescalerRunning(XMC_CCU4_MODULE_t *const module) { XMC_ASSERT("XMC_CCU4_IsPrescalerRunning:Invalid Module Pointer", XMC_CCU4_IsValidModule(module)); return((bool)((module->GSTAT & (uint32_t) CCU4_GSTAT_PRB_Msk) == (uint32_t)CCU4_GSTAT_PRB_Msk)); } /** * @param module Constant pointer to CCU4 module * @param clock_mask Slices whose clocks are to be enabled simultaneously. * Bit location 0/1/2/3 represents slice-0/1/2/3 respectively. * Range: [0x1 to 0xF] * @return
* None
* * \parDescription:
* Enables clocks of multiple slices at a time, by configuring GIDLC.CS0I, GIDLC.CS1I, GIDLC.CS2I, * GIDLC.CS3I bits.\n\n * Takes an input clock_mask, which determines the slices that would receive the clock. Bring them out * of the idle state simultaneously. * * \parRelated APIs:
* XMC_CCU4_EnableClock()
XMC_CCU4_DisableClock(). */ __STATIC_INLINE void XMC_CCU4_EnableMultipleClocks(XMC_CCU4_MODULE_t *const module, const uint8_t clock_mask) { XMC_ASSERT("XMC_CCU4_EnableMultipleClocks:Invalid Module Pointer", XMC_CCU4_IsValidModule(module)); XMC_ASSERT("XMC_CCU4_EnableMultipleClocks:Wrong clock mask", (clock_mask < 16U)); module->GIDLC |= (uint32_t) clock_mask; } /** * @param module Constant pointer to CCU4 module * @param slice_number Slice for which the clock should be Enabled. * Range: [0x0 to 0x3] * @return
* None
* * \parDescription:
* Enables the slice timer clock, by configuring GIDLC.CS0I, GIDLC.CS1I, GIDLC.CS2I, * GIDLC.CS3I bits according to the selected \a slice_number.\n\n * It is possible to enable/disable clock at slice level. This uses the \b slice_number to indicate the * slice whose clock needs to be enabled. * * \parRelated APIs:
* XMC_CCU4_DisableClock()
XMC_CCU4_EnableMultipleClocks()
XMC_CCU4_StartPrescaler()
XMC_CCU4_StopPrescaler(). */ __STATIC_INLINE void XMC_CCU4_EnableClock(XMC_CCU4_MODULE_t *const module, const uint8_t slice_number) { XMC_ASSERT("XMC_CCU4_EnableClock:Invalid Module Pointer", XMC_CCU4_IsValidModule(module)); XMC_ASSERT("XMC_CCU4_EnableClock:Invalid Slice Number", (slice_number < 4U)); module->GIDLC |= ((uint32_t) 1) << slice_number; } /** * @param module Constant pointer to CCU4 module * @param slice_number Slice for which the clock should be disabled. * Range: [0x0 to 0x3] * @return
* None
* * \parDescription:
* Disables the slice timer clock, by configuring GIDLS.SS0I, GIDLS.SSS1I, GIDLS.SSS2I, * GIDLS.SSS3I bits according to the selected \a slice_number .\n\n * It is possible to disable clock at slice level using the module pointer. * \b slice_number is used to disable the clock to a given slice of the module. * Directly accessed Register is GIDLS. * * \parRelated APIs:
* XMC_CCU4_EnableClock()
XMC_CCU4_EnableMultipleClocks()
XMC_CCU4_StartPrescaler()
XMC_CCU4_StopPrescaler(). */ __STATIC_INLINE void XMC_CCU4_DisableClock(XMC_CCU4_MODULE_t *const module, const uint8_t slice_number) { XMC_ASSERT("XMC_CCU4_DisableClock:Invalid Module Pointer", XMC_CCU4_IsValidModule(module)); XMC_ASSERT("XMC_CCU4_DisableClock:Invalid Slice Number", (slice_number < 4U)); module->GIDLS |= ((uint32_t) 1) << slice_number; } /** * @param slice Constant pointer to CC4 Slice * @param compare_init Pointer to slice configuration structure * @return
* None
* * \parDescription:
* Initialization of a CC4 slice to compare mode, by configuring CC4yTC, CC4yCMC, CC4yPSC, CC4yDITH, CC4yPSL, * CC4yFPCS, CC4yCHC registers.\n\n * CC4 slice is configured with Timer configurations in this routine. * After initialization user has to explicitly enable the shadow transfer for the required values by calling * XMC_CCU4_EnableShadowTransfer() with appropriate mask. * * \parRelated APIs:
* None. */ void XMC_CCU4_SLICE_CompareInit(XMC_CCU4_SLICE_t *const slice, const XMC_CCU4_SLICE_COMPARE_CONFIG_t *const compare_init); /** * @param slice Constant pointer to CC4 Slice * @param capture_init Pointer to slice configuration structure * @return
* None
* * \parDescription:
* Initialization of a CC4 slice to capture mode, by configuring CC4yTC, CC4yCMC, CC4yPSC,CC4yFPCS registers.\n\n * CC4 slice is configured with Capture configurations in this routine.After initialization user has to explicitly * enable the shadow transfer for the required values by calling XMC_CCU4_EnableShadowTransfer() * with appropriate mask. * * \parRelated APIs:
* XMC_CCU4_SLICE_Capture0Config()
XMC_CCU4_SLICE_Capture1Config(). */ void XMC_CCU4_SLICE_CaptureInit(XMC_CCU4_SLICE_t *const slice, const XMC_CCU4_SLICE_CAPTURE_CONFIG_t *const capture_init); /** * @param slice Constant pointer to CC4 Slice * @param event Map an External event to the External Start Function * @param start_mode Behavior of slice when the start function is activated * @return
* None
* * \parDescription:
* Configures the Start Function of the slice, by configuring CC4yCMC.ENDS and CC4yTC.ENDM bits.\n\n * Start function is mapped with one of the 3 events. An external signal can control when a CC4 timer should start. * Additionally, the behaviour of the slice upon activation of the start function is configured as well. * * \parRelated APIs:
* XMC_CCU4_SLICE_StopConfig()
XMC_CCU4_SLICE_ConfigureEvent()
XMC_CCU4_SLICE_SetInput(). */ void XMC_CCU4_SLICE_StartConfig(XMC_CCU4_SLICE_t *const slice, const XMC_CCU4_SLICE_EVENT_t event, const XMC_CCU4_SLICE_START_MODE_t start_mode); /** * @param slice Constant pointer to CC4 Slice * @param event Map an External event to the External Stop Function * @param end_mode Behavior of slice when the stop function is activated * @return
* None
* * \parDescription:
* Configures the Stop function for the slice, by configuring CC4yCMC.STRTS and CC4yTC.STRM bits.\n\n * Stop function is mapped with one of the 3 events. An external signal can control when a CCU4 timer should stop. * Additionally, the behaviour of the slice upon activation of the stop function is configured as well. * * \parRelated APIs:
* XMC_CCU4_SLICE_StartConfig()
XMC_CCU4_SLICE_ConfigureEvent()
XMC_CCU4_SLICE_SetInput(). */ void XMC_CCU4_SLICE_StopConfig(XMC_CCU4_SLICE_t *const slice, const XMC_CCU4_SLICE_EVENT_t event, const XMC_CCU4_SLICE_END_MODE_t end_mode); /** * @param slice Constant pointer to CC4 Slice * @param event Map an External event to the External load Function * @return
* None
* * \parDescription:
* Configures the Load Function for the slice, by configuring CC4yCMC.LDS bit.\n\n * Load function is mapped with one of the 3 events. Up on occurrence of the event,\n * if CC4yTCST.CDIR set to 0,CC4yTIMER register is reloaded with the value from compare register\n * if CC4yTCST.CDIR set to 1,CC4yTIMER register is reloaded with the value from period register\n * * \parRelated APIs:
* XMC_CCU4_SLICE_ConfigureEvent()
XMC_CCU4_SLICE_SetInput(). */ void XMC_CCU4_SLICE_LoadConfig(XMC_CCU4_SLICE_t *const slice, const XMC_CCU4_SLICE_EVENT_t event); /** * @param slice Constant pointer to CC4 Slice * @param event Map an External event to the External Modulation Function * @param mod_mode Desired Modulation mode * @param synch_with_pwm Option to synchronize modulation with PWM start * Pass \b true if the modulation needs to be synchronized with PWM signal. * @return
* None
* * \parDescription:
* Configures the Output Modulation Function of the slice, by configuring CCeyCMC.MOS, CC4yTC.EMT and * CC4yTC.EMS bits.\n\n * Modulation function is mapped with one of the 3 events. The output signal of the CCU can * be modulated according to a external input. Additionally, the behaviour of the slice upon activation * of the modulation function is configured as well. * * \parRelated APIs:
* XMC_CCU4_SLICE_ConfigureEvent()
XMC_CCU4_SLICE_SetInput(). */ void XMC_CCU4_SLICE_ModulationConfig(XMC_CCU4_SLICE_t *const slice, const XMC_CCU4_SLICE_EVENT_t event, const XMC_CCU4_SLICE_MODULATION_MODE_t mod_mode, const bool synch_with_pwm); /** * @param slice Constant pointer to CC4 Slice * @param event Map an External event to the External Count Function * @return
* None
* * \parDescription:
* Configures the Count Function of the slice, by configuring CC4yCMC.CNTS bit.\n\n * Count function is mapped with one of the 3 events. CCU4 slice can take an external * signal to act as the counting event. The CCU4 slice would count the * edges present on the \b event selected. * * \parRelated APIs:
* XMC_CCU4_SLICE_ConfigureEvent()
XMC_CCU4_SLICE_SetInput(). */ void XMC_CCU4_SLICE_CountConfig(XMC_CCU4_SLICE_t *const slice, const XMC_CCU4_SLICE_EVENT_t event); /** * @param slice Constant pointer to CC4 Slice * @param event Map an External event to the External Gating Function * @return
* None
* * \parDescription:
* Configures the Gating Function of the slice, by configuring CC4yCMC.GATES bit.\n\n * Gating function is mapped with one of the 3 events. A CCU4 slice can use an input signal that would * operate as counter gating. If the configured Active level is detected the counter will gate all the pulses. * * \parRelated APIs:
* XMC_CCU4_SLICE_ConfigureEvent()
XMC_CCU4_SLICE_SetInput(). */ void XMC_CCU4_SLICE_GateConfig(XMC_CCU4_SLICE_t *const slice, const XMC_CCU4_SLICE_EVENT_t event); /** * @param slice Constant pointer to CC4 Slice * @param event Map an External event to the Capture-0 Function * @return
* None
* * \parDescription:
* Configures the Capture-0 Function of the slice, by configuring CC4yCMC.CAP0S bit.\n\n * Capture function is mapped with one of the 3 events. A CCU4 slice can be configured into capture-0 mode * with the selected \b event. In this mode the CCU4 will capture the timer value into CC4yC0V and CC4yC1V. * * \parRelated APIs:
* XMC_CCU4_SLICE_ConfigureEvent()
XMC_CCU4_SLICE_SetInput(). */ void XMC_CCU4_SLICE_Capture0Config(XMC_CCU4_SLICE_t *const slice, const XMC_CCU4_SLICE_EVENT_t event); /** * @param slice Constant pointer to CC4 Slice * @param event Map an External event to the Capture-1 Function * @return
* None
* * \parDescription:
* Configures the Capture-1 Function of the slice, by configuring CC4yCMC.CAP1S bit.\n\n * Capture function is mapped with one of the 3 events. A CCU4 slice can be configured into capture-1 * mode with the selected \b event. In this mode the CCU4 will capture the timer value into CC4yC2V and CC4yC3V. * * \parRelated APIs:
* XMC_CCU4_SLICE_ConfigureEvent()
XMC_CCU4_SLICE_SetInput(). */ void XMC_CCU4_SLICE_Capture1Config(XMC_CCU4_SLICE_t *const slice, const XMC_CCU4_SLICE_EVENT_t event); /** * @param slice Constant pointer to CC4 Slice * @return
* bool would return true if the extended capture read back mode is enabled
* * \parDescription:
* Checks if Extended capture mode read is enabled for particular slice or not, by reading CC4yTC.ECM bit.\n\n * In this mode the there is only one associated read address for all the capture registers. * Individual capture registers can still be accessed in this mode. * * \parRelated APIs:
* XMC_CCU4_GetCapturedValueFromFifo(). */ __STATIC_INLINE bool XMC_CCU4_SLICE_IsExtendedCapReadEnabled(const XMC_CCU4_SLICE_t *const slice) { XMC_ASSERT("XMC_CCU4_SLICE_IsExtendedCapReadEnabled:Invalid Module Pointer", XMC_CCU4_IsValidSlice(slice)); return((bool)((slice->TC & (uint32_t) CCU4_CC4_TC_ECM_Msk) == (uint32_t)CCU4_CC4_TC_ECM_Msk)); } #if defined(CCU4V1) /* Defined for XMC4500, XMC4400, XMC4200, XMC4100 devices only */ /** * @param module Constant pointer to CCU4 module * @param slice_number to check whether read value belongs to required slice or not * @return
* int32_t Returns -1 if the FIFO value being retrieved is not from the \b slice_number. * Returns the value captured in the \b slice_number, if captured value is from the correct slice. * Range: [0x0 to 0xFFFF] * * \parDescription:
* Read captured value from FIFO(ECRD register).\n\n * This is applicable only in the Capture mode of operation. The signal whose timing characteristics are to be measured * must be mapped to an event which in turn must be mapped to the capture function. Based on the capture criteria, the * instant timer values are captured into capture registers. Timing characteristics of the input signal may then be * derived/inferred from the captured values. * * \parRelated APIs:
* XMC_CCU4_SLICE_IsExtendedCapReadEnabled(). * @note Only available for XMC4500, XMC4400, XMC4200 and XMC4100 series */ int32_t XMC_CCU4_GetCapturedValueFromFifo(const XMC_CCU4_MODULE_t *const module, const uint8_t slice_number); #else /** * @param slice Constant pointer to CC4 Slice * @param set The capture register set from which the captured value is to be retrieved * @return
* uint32_t Returns the value captured in the \b slice_number * Range: [0x0 to 0xFFFF] * * \parDescription:
* Read captured value from FIFO(CC4yECRD0 and CC4yECRD1).\n\n * This is applicable only in the Capture mode of operation. The signal whose timing characteristics are to be measured * must be mapped to an event which in turn must be mapped to the capture function. Based on the capture criteria, the * instant timer values are captured into capture registers. Timing characteristics of the input signal may then be * derived/inferred from the captured values. * * \parRelated APIs:
* XMC_CCU4_SLICE_IsExtendedCapReadEnabled(). * @note Defined for XMC4800, XMC4700, XMC4500, XMC4400, XMC4200, XMC4100 devices only. For other devices use XMC_CCU4_GetCapturedValueFromFifo() API */ uint32_t XMC_CCU4_SLICE_GetCapturedValueFromFifo(const XMC_CCU4_SLICE_t *const slice, const XMC_CCU4_SLICE_CAP_REG_SET_t set); #endif /** * @param slice Constant pointer to CC4 Slice * @param event Map an External event to the External Count Direction Function * @return
* None
* * \parDescription:
* Configures the Count Direction of the slice, by configuring CC4yCMC.UDS bit.\n\n * Count direction function is mapped with one of the 3 events. A slice can be configured to change the * CC4yTIMER count direction depending on an external signal. * * \parRelated APIs:
* XMC_CCU4_SLICE_ConfigureEvent()
XMC_CCU4_SLICE_SetInput(). */ void XMC_CCU4_SLICE_DirectionConfig(XMC_CCU4_SLICE_t *const slice, const XMC_CCU4_SLICE_EVENT_t event); /** * @param slice Constant pointer to CC4 Slice * @return
* None
* * \parDescription:
* Configures the status bit override Function of the slice, by configuring CC4yCMC.OFS bit.\n\n * Status bit override function is mapped with one of the 3 events. A slice can be configured to change the * output of the timer's CC4yST signal depending on an external signal. * * \parRelated APIs:
* XMC_CCU4_SLICE_ConfigureStatusBitOverrideEvent(). */ void XMC_CCU4_SLICE_StatusBitOverrideConfig(XMC_CCU4_SLICE_t *const slice); /** * @param slice Constant pointer to CC4 Slice * @param exit_mode How should a previously logged trap state be exited? * @param synch_with_pwm Should exit of trap state be synchronized with PWM cycle start? * @return
* None
* * \parDescription:
* Configures the Trap Function of the slice, by configuring CC4yCMC.TS, CC4yTC.TRPSE, and CC4yTC.TRPSW bits.\n\n * Trap function is mapped with Event-2. Criteria for exiting the trap state is configured. * This trap function allows PWM outputs to react on the state of an input pin. * Thus PWM output can be forced to inactive state upon detection of a trap. * It is also possible to synchronize the trap function with the PWM signal using the \b synch_with_pwm. * * \parRelated APIs:
* XMC_CCU4_SLICE_ConfigureEvent()
XMC_CCU4_SLICE_SetInput(). */ void XMC_CCU4_SLICE_TrapConfig(XMC_CCU4_SLICE_t *const slice, const XMC_CCU4_SLICE_TRAP_EXIT_MODE_t exit_mode, bool synch_with_pwm); /** * @param slice Constant pointer to CC4 Slice * @param ev1_config Pointer to event 1 configuration data * @param ev2_config Pointer to event 2 configuration data * @return
* None
* * * \parDescription:
* Map Status bit override function with an Event1 & Event 2 of the slice and configure CC4yINS register.\n\n * Details such as the input mapped to the event, event detection criteria and Low Pass filter options are programmed * by this routine for the events 1 & 2. Event-1 input would be the trigger to override the value. * Event-2 input would be the override value. * * \parRelated APIs:
* XMC_CCU4_SLICE_StatusBitOverrideConfig(). */ void XMC_CCU4_SLICE_ConfigureStatusBitOverrideEvent(XMC_CCU4_SLICE_t *const slice, const XMC_CCU4_SLICE_EVENT_CONFIG_t *const ev1_config, const XMC_CCU4_SLICE_EVENT_CONFIG_t *const ev2_config); /** * @param slice Constant pointer to CC4 Slice * @param event The External Event which needs to be configured. * @param config Pointer to event configuration data. * @return
* None
* * \parDescription:
* Configures an External Event of the slice, by updating CC4yINS register .\n\n * Details such as the input mapped to the event, event detection criteria and low pass filter * options are programmed by this routine. The Event \b config will configure the input selection, * the edge selection, the level selection and the Low pass filter for the event. * * \parRelated APIs:
* XMC_CCU4_SLICE_StartConfig()
XMC_CCU4_SLICE_StopConfig()
XMC_CCU4_SLICE_LoadConfig()
* XMC_CCU4_SLICE_ModulationConfig()
XMC_CCU4_SLICE_CountConfig()
XMC_CCU4_SLICE_GateConfig()
* XMC_CCU4_SLICE_Capture0Config()
XMC_CCU4_SLICE_Capture1Config()
XMC_CCU4_SLICE_DirectionConfig()
* XMC_CCU4_SLICE_StatusBitOverrideConfig()
XMC_CCU4_SLICE_TrapConfig(). */ void XMC_CCU4_SLICE_ConfigureEvent(XMC_CCU4_SLICE_t *const slice, const XMC_CCU4_SLICE_EVENT_t event, const XMC_CCU4_SLICE_EVENT_CONFIG_t *const config); /** * @param slice Constant pointer to CC4 Slice * @param event The External Event which needs to be configured. * @param input One of the 16 inputs meant to be mapped to the desired event * @return
* None
* * * \parDescription:
* Selects an input for an external event, by configuring CC4yINS register.\n\n * It is possible to select one of the possible 16 input signals for a given Event. * This configures the CC4yINS.EVxIS for the selected event. * * \parRelated APIs:
* XMC_CCU4_SLICE_StartConfig()
XMC_CCU4_SLICE_StopConfig()
XMC_CCU4_SLICE_LoadConfig()
* XMC_CCU4_SLICE_ModulationConfig()
XMC_CCU4_SLICE_CountConfig()
XMC_CCU4_SLICE_GateConfig()
* XMC_CCU4_SLICE_Capture0Config()
XMC_CCU4_SLICE_Capture1Config()
XMC_CCU4_SLICE_DirectionConfig()
* XMC_CCU4_SLICE_StatusBitOverrideConfig()
XMC_CCU4_SLICE_TrapConfig(). */ void XMC_CCU4_SLICE_SetInput(XMC_CCU4_SLICE_t *const slice, const XMC_CCU4_SLICE_EVENT_t event, const XMC_CCU4_SLICE_INPUT_t input); /** * @param slice Constant pointer to CC4 Slice * @return
* None
* * \parDescription:
* Enables the trap feature, by setting CC4yTC.TRAPE0, CC4yTC.TRAPE1, CC4yTC.TRAPE2 and CC4yTC.TRAPE3 bit based on the * \a out_mask.\n\n * A particularly useful feature where the PWM output can be forced inactive upon detection of a trap. The trap signal * can be the output of a sensing element which has just detected an abnormal electrical condition. * * \parRelated APIs:
* XMC_CCU4_SLICE_TrapConfig()
XMC_CCU4_SLICE_DisableTrap()
XMC_CCU4_SLICE_ConfigureEvent()
* XMC_CCU4_SLICE_SetInput(). */ __STATIC_INLINE void XMC_CCU4_SLICE_EnableTrap(XMC_CCU4_SLICE_t *const slice) { XMC_ASSERT("XMC_CCU4_SLICE_EnableTrap:Invalid Slice Pointer", XMC_CCU4_IsValidSlice(slice)); slice->TC |= (uint32_t) CCU4_CC4_TC_TRAPE_Msk; } /** * @param slice Constant pointer to CC4 Slice * @return
* None
* * \parDescription:
* Disables the trap feature, by clearing CC4yTC.TRAPE0, CC4yTC.TRAPE1, CC4yTC.TRAPE2 and CC4yTC.TRAPE3 bit based on the * \a out_mask.\n\n.\n\n * This API will revert the changes done by XMC_CCU4_SLICE_EnableTrap(). * This Ensures that the TRAP function has no effect on the output of the CCU4 slice. * * \parRelated APIs:
* XMC_CCU4_SLICE_EnableTrap(). */ __STATIC_INLINE void XMC_CCU4_SLICE_DisableTrap(XMC_CCU4_SLICE_t *const slice) { XMC_ASSERT("XMC_CCU4_SLICE_DisableTrap:Invalid Slice Pointer", XMC_CCU4_IsValidSlice(slice)); slice->TC &= ~((uint32_t) CCU4_CC4_TC_TRAPE_Msk); } /** * @param slice Constant pointer to CC4 Slice * @return
* bool returns \b true if the Timer is running else it returns \b false. * * \parDescription:
* Returns the state of the timer (Either Running or stopped(idle)), by reading CC4yTCST.TRB bit. * * \parRelated APIs:
* XMC_CCU4_SLICE_StartTimer()
XMC_CCU4_SLICE_StopTimer(). */ __STATIC_INLINE bool XMC_CCU4_SLICE_IsTimerRunning(const XMC_CCU4_SLICE_t *const slice) { XMC_ASSERT("XMC_CCU4_SLICE_GetTimerStatus:Invalid Slice Pointer", XMC_CCU4_IsValidSlice(slice)); return (bool)(((slice->TCST) & CCU4_CC4_TCST_TRB_Msk) == CCU4_CC4_TCST_TRB_Msk); } /** * @param slice Constant pointer to CC4 Slice * @return
* ::XMC_CCU4_SLICE_TIMER_COUNT_DIR_t returns the direction in which the timer is counting. * * \parDescription:
* Returns the timer counting direction, by reading CC4yTCST.CDIR bit.\n\n * This API will return the direction in which the timer is currently * incrementing(XMC_CCU4_SLICE_TIMER_COUNT_DIR_UP) or decrementing (XMC_CCU4_SLICE_TIMER_COUNT_DIR_DOWN). * * \parRelated APIs:
* None. */ __STATIC_INLINE XMC_CCU4_SLICE_TIMER_COUNT_DIR_t XMC_CCU4_SLICE_GetCountingDir(const XMC_CCU4_SLICE_t *const slice) { XMC_ASSERT("XMC_CCU4_SLICE_GetCountingDir:Invalid Slice Pointer", XMC_CCU4_IsValidSlice(slice)); return((XMC_CCU4_SLICE_TIMER_COUNT_DIR_t)(((slice->TCST) & CCU4_CC4_TCST_CDIR_Msk) >> CCU4_CC4_TCST_CDIR_Pos)); } /** * @param slice Constant pointer to CC4 Slice * @return
* None
* * \parDescription:
* Starts the timer counting operation, by setting CC4yTCSET.TRBS bit.\n\n * It is necessary to have configured the CC4 slice before starting its timer. * Before the Timer is started ensure that the clock is provided to the slice. * * \parRelated APIs:
* XMC_CCU4_SLICE_StopTimer(). */ __STATIC_INLINE void XMC_CCU4_SLICE_StartTimer(XMC_CCU4_SLICE_t *const slice) { XMC_ASSERT("XMC_CCU4_SLICE_StartTimer:Invalid Slice Pointer", XMC_CCU4_IsValidSlice(slice)); slice->TCSET = CCU4_CC4_TCSET_TRBS_Msk; } /** * @param slice Constant pointer to CC4 Slice * @return
* None
* * \parDescription:
* Stops the Timer.
\n * Timer counting operation can be stopped by invoking this API, by setting CC4yTCCLR.TRBC bit. * * \parRelated APIs:
* XMC_CCU4_SLICE_StartTimer(). */ __STATIC_INLINE void XMC_CCU4_SLICE_StopTimer(XMC_CCU4_SLICE_t *const slice) { XMC_ASSERT("XMC_CCU4_SLICE_StopTimer:Invalid Slice Pointer", XMC_CCU4_IsValidSlice(slice)); slice->TCCLR = (uint32_t) CCU4_CC4_TCCLR_TRBC_Msk; } /** * @param slice Constant pointer to CC4 Slice * @return
* None
* * \parDescription:
* Resets the timer count to zero, by setting CC4yTCCLR.TCC bit.\n\n * A timer which has been stopped can still retain the last counted value. * After invoking this API the timer value will be cleared. * * \parRelated APIs:
* XMC_CCU4_SLICE_StartTimer(). */ __STATIC_INLINE void XMC_CCU4_SLICE_ClearTimer(XMC_CCU4_SLICE_t *const slice) { XMC_ASSERT("XMC_CCU4_SLICE_ClearTimer:Invalid Slice Pointer", XMC_CCU4_IsValidSlice(slice)); slice->TCCLR = (uint32_t) CCU4_CC4_TCCLR_TCC_Msk; } /** * @param slice Constant pointer to CC4 Slice * @return
* None
* * \parDescription:
* Stops and resets the timer count to zero, by setting CC4yTCCLR.TCC and CC4yTCCLR.TRBC bit.\n\n * * \parRelated APIs:
* XMC_CCU4_SLICE_StartTimer(). */ __STATIC_INLINE void XMC_CCU4_SLICE_StopClearTimer(XMC_CCU4_SLICE_t *const slice) { XMC_ASSERT("XMC_CCU4_SLICE_StopClearTimer:Invalid Slice Pointer", XMC_CCU4_IsValidSlice(slice)); slice->TCCLR = CCU4_CC4_TCCLR_TRBC_Msk | CCU4_CC4_TCCLR_TCC_Msk; } /** * @param slice Constant pointer to CC4 Slice * @return
* ::XMC_CCU4_SLICE_MODE_t returns XMC_CCU4_SLICE_MODE_COMPARE if the slice is operating in compare mode * returns XMC_CCU4_SLICE_MODE_CAPTURE if the slice is operating in capture mode * * \parDescription:
* Retrieves the current mode of operation in the slice (either Capture mode or Compare mode), by reading * CC4yTC.CMOD bit.\n\n * Ensure that before invoking this API the CCU4 slice should be configured otherwise the output of this API is * invalid. * * \parRelated APIs:
* None. */ __STATIC_INLINE XMC_CCU4_SLICE_MODE_t XMC_CCU4_SLICE_GetSliceMode(const XMC_CCU4_SLICE_t *const slice) { XMC_ASSERT("XMC_CCU4_SLICE_GetSliceMode:Invalid Slice Pointer", XMC_CCU4_IsValidSlice(slice)); return((XMC_CCU4_SLICE_MODE_t)(((slice->TC) & CCU4_CC4_TC_CMOD_Msk) >> CCU4_CC4_TC_CMOD_Pos)); } /** * @param slice Constant pointer to CC4 Slice * @param mode Desired repetition mode (Either single shot or Continuous) * @return
* None
* * \parDescription:
* Configures the Timer to either Single shot mode or continuous mode, by configuring CC4yTC.TSSM bit.\n\n * The timer will count up to the terminal count as specified in the period register and stops immediately if the repeat * mode has been set to single shot. In the continuous mode of operation, the timer starts counting all over again after * reaching the terminal count. * * \parRelated APIs:
* XMC_CCU4_SLICE_GetTimerRepeatMode(). */ void XMC_CCU4_SLICE_SetTimerRepeatMode(XMC_CCU4_SLICE_t *const slice, const XMC_CCU4_SLICE_TIMER_REPEAT_MODE_t mode); /** * @param slice Constant pointer to CC4 Slice * @return
* ::XMC_CCU4_SLICE_TIMER_REPEAT_MODE_t returns XMC_CCU4_SLICE_TIMER_REPEAT_MODE_REPEAT if continuous mode is selected * returns XMC_CCU4_SLICE_TIMER_REPEAT_MODE_SINGLE if single shot mode is selected * * \parDescription:
* Retrieves the Timer repeat mode, either Single shot mode or continuous mode, by reading CC4yTC.TSSM bit.\n\n * The timer will count up to the terminal count as specified in the period register and stops immediately if the repeat * mode has been set to single shot mode. In the continuous mode of operation, the timer starts counting * all over again after reaching the terminal count. * * \parRelated APIs:
* XMC_CCU4_SLICE_SetTimerRepeatMode(). */ __STATIC_INLINE XMC_CCU4_SLICE_TIMER_REPEAT_MODE_t XMC_CCU4_SLICE_GetTimerRepeatMode( const XMC_CCU4_SLICE_t *const slice) { XMC_ASSERT("XMC_CCU4_SLICE_GetTimerRepeatMode:Invalid Slice Pointer", XMC_CCU4_IsValidSlice(slice)); return((XMC_CCU4_SLICE_TIMER_REPEAT_MODE_t)(((slice->TC) & CCU4_CC4_TC_TSSM_Msk) >> CCU4_CC4_TC_TSSM_Pos)); } /** * @param slice Constant pointer to CC4 Slice * @param mode Desired counting mode (Either Edge Aligned or Center Aligned) * @return
* None
* * \parDescription:
* Configures the timer counting mode either Edge Aligned or Center Aligned, by configuring CC4yTC.TCM bit.\n\n * In the edge aligned mode, the timer counts from 0 to the terminal count. Once the timer count has reached a preset * compare value, the timer status output asserts itself. It will now deassert only after the timer count reaches the * terminal count.\n In the center aligned mode, the timer first counts from 0 to the terminal count and then back to 0. * During this upward and downward counting, the timer status output stays asserted as long as the timer value is * greater than the compare value. * * \parRelated APIs:
* XMC_CCU4_SLICE_GetTimerCountingMode(). */ void XMC_CCU4_SLICE_SetTimerCountingMode(XMC_CCU4_SLICE_t *const slice, const XMC_CCU4_SLICE_TIMER_COUNT_MODE_t mode); /** * @param slice Constant pointer to CC4 Slice * @return
* ::XMC_CCU4_SLICE_TIMER_COUNT_MODE_t returns XMC_CCU4_SLICE_TIMER_COUNT_MODE_EA if edge aligned mode is selected * returns XMC_CCU4_SLICE_TIMER_COUNT_MODE_CA if center aligned mode is selected * * \parDescription:
* Retrieves timer counting mode either Edge aligned or Center Aligned, by reading CC4yTC.TCM bit.\n\n * * \parRelated APIs:
* XMC_CCU4_SLICE_SetTimerCountingMode(). */ __STATIC_INLINE XMC_CCU4_SLICE_TIMER_COUNT_MODE_t XMC_CCU4_SLICE_GetTimerCountingMode( const XMC_CCU4_SLICE_t *const slice) { XMC_ASSERT("XMC_CCU4_SLICE_GetTimerCountingMode:Invalid Slice Pointer", XMC_CCU4_IsValidSlice(slice)); return((XMC_CCU4_SLICE_TIMER_COUNT_MODE_t)(((slice->TC) & CCU4_CC4_TC_TCM_Msk) >> CCU4_CC4_TC_TCM_Pos)); } /** * @param slice Constant pointer to CC4 Slice * @param period_val Timer period value * Range: [0x0 to 0xFFFF] * @return
* None
* * \parDescription:
* Programs the timer period, by writing CC4yPRS register.\n\n * The frequency of counting/ PWM frequency is determined by this value. The period value is written to a shadow * register. Explicitly enable the shadow transfer for the the period value by calling * XMC_CCU4_EnableShadowTransfer() with appropriate mask. If shadow transfer is enabled and the timer is running, * a period match transfers the value from the shadow register to the actual period register. * * \parRelated APIs:
* XMC_CCU4_SLICE_GetTimerPeriodMatch(). */ __STATIC_INLINE void XMC_CCU4_SLICE_SetTimerPeriodMatch(XMC_CCU4_SLICE_t *const slice, const uint16_t period_val) { XMC_ASSERT("XMC_CCU4_SLICE_SetTimerPeriodMatch:Invalid Slice Pointer", XMC_CCU4_IsValidSlice(slice)); slice->PRS = (uint32_t) period_val; } /** * @param slice Constant pointer to CC4 Slice * @return
* uint16_t returns the current timer period value * Range: [0x0 to 0xFFFF] * * \parDescription:
* Retrieves the timer period value currently effective, by reading CC4yPR register.\n\n * If the timer is active then the value being returned is currently being used for the PWM period. * * \parNote:
* The XMC_CCU4_SLICE_SetTimerPeriodMatch() would set the new period value to a shadow register. * This would only transfer the new values into the actual period register if the shadow transfer request * is enabled and if a period match occurs. Hence a consecutive call to XMC_CCU4_SLICE_GetTimerPeriodMatch() * would not reflect the new values until the shadow transfer completes. * * \parRelated APIs:
* XMC_CCU4_SLICE_SetTimerPeriodMatch(). */ __STATIC_INLINE uint16_t XMC_CCU4_SLICE_GetTimerPeriodMatch(const XMC_CCU4_SLICE_t *const slice) { XMC_ASSERT("XMC_CCU4_SLICE_SetTimerPeriodMatch:Invalid Slice Pointer", XMC_CCU4_IsValidSlice(slice)); return((uint16_t)slice->PR); } /** * @param slice Constant pointer to CC4 Slice * @param compare_val Timer compare value * @return
* None
* * \parDescription:
* Programs the timer compare value, by writing CC4yCRS register.
\n * The PWM duty cycle is determined by this value. * The compare value is written to a shadow register. Explicitly enable the shadow transfer for * the the period/compare value by calling XMC_CCU4_EnableShadowTransfer() with * appropriate mask.If shadow transfer is enabled and the timer is running, * a period match transfers the value from the shadow register to the actual compare register. * * \parRelated APIs:
* XMC_CCU4_SLICE_GetTimerPeriodMatch(). */ __STATIC_INLINE void XMC_CCU4_SLICE_SetTimerCompareMatch(XMC_CCU4_SLICE_t *const slice, const uint16_t compare_val) { XMC_ASSERT("XMC_CCU4_SLICE_SetTimerCompareMatch:Invalid Slice Pointer", XMC_CCU4_IsValidSlice(slice)); slice->CRS = (uint32_t) compare_val; } /** * @param slice Constant pointer to CC4 Slice * @return
* uint16_t returns the current timer compare value * Range: [0x0 to 0xFFFF] * * \parDescription:
* Retrieves the timer compare value currently effective, by reading CC4yCRS register.\n\n * If the timer is active then the value being returned is currently being for the PWM duty cycle( timer compare value). * * \parNote:
* The XMC_CCU4_SLICE_SetTimerCompareMatch() would set the new compare value to a shadow register. * This would only transfer the new values into the actual compare register if the shadow transfer request * is enabled and if a period match occurs. Hence a consecutive call to XMC_CCU4_SLICE_GetTimerCompareMatch() * would not reflect the new values until the shadow transfer completes. * Directly accessed Register is CC4yCR. * * \parRelated APIs:
* XMC_CCU4_SLICE_SetTimerCompareMatch(). */ __STATIC_INLINE uint16_t XMC_CCU4_SLICE_GetTimerCompareMatch(const XMC_CCU4_SLICE_t *const slice) { XMC_ASSERT("XMC_CCU4_SLICE_GetTimerCompareMatch:Invalid Slice Pointer", XMC_CCU4_IsValidSlice(slice)); return((uint16_t)slice->CR); } /** * @param module Constant pointer to CCU4 module * @param shadow_transfer_msk Shadow transfer request mask for various transfers. * Use ::XMC_CCU4_SHADOW_TRANSFER_t enum items to create a mask of choice, * using a bit wise OR operation. * @return
* None
* * \parDescription:
* Requests of shadow transfer for Period, Compare, Passive level, dither and prescaler, by configuring * the GCSS register.\n\n * The transfer from the shadow registers to the actual registers is done in the immediate next occurrence of the * shadow transfer trigger after the API is called. * * Any call to XMC_CCU4_SLICE_SetTimerPeriodMatch()
XMC_CCU4_SLICE_SetTimerCompareMatch()
* XMC_CCU4_SLICE_SetPrescaler()
XMC_CCU4_SLICE_CompareInit()
XMC_CCU4_SLICE_CaptureInit(). * must be succeeded by this API. * Directly accessed Register is GCSS. * * \parRelated APIs:
* None. */ __STATIC_INLINE void XMC_CCU4_EnableShadowTransfer(XMC_CCU4_MODULE_t *const module, const uint32_t shadow_transfer_msk) { XMC_ASSERT("XMC_CCU4_EnableShadowTransfer:Invalid Slice Pointer", XMC_CCU4_IsValidModule(module)); module->GCSS = (uint32_t)shadow_transfer_msk; } /** * @param slice Constant pointer to CC4 Slice * @return
* uint16_t returns the current timer value * Range: [0x0 to 0xFFFF] * * \parDescription:
* Retrieves the latest timer value, from CC4yTIMER register.\n\n * * \parRelated APIs:
* XMC_CCU4_SLICE_SetTimerValue(). */ __STATIC_INLINE uint16_t XMC_CCU4_SLICE_GetTimerValue(const XMC_CCU4_SLICE_t *const slice) { XMC_ASSERT("XMC_CCU4_SLICE_GetTimerValue:Invalid Slice Pointer", XMC_CCU4_IsValidSlice(slice)); return((uint16_t)slice->TIMER); } /** * @param slice Constant pointer to CC4 Slice * @param timer_val The new timer value that has to be loaded into the TIMER register. * Range: [0x0 to 0xFFFF] * @return
* None
* * \parDescription:
* Loads a new timer value, by setting CC4yTIMER register.\n\n * * \parNote:
* Request to load is ignored if the timer is running. * * \parRelated APIs:
* XMC_CCU4_SLICE_GetTimerValue(). */ __STATIC_INLINE void XMC_CCU4_SLICE_SetTimerValue(XMC_CCU4_SLICE_t *const slice, const uint16_t timer_val) { XMC_ASSERT("XMC_CCU4_SLICE_SetTimerValue:Invalid Slice Pointer", XMC_CCU4_IsValidSlice(slice)); slice->TIMER = (uint32_t) timer_val; } /** * @param slice Constant pointer to CC4 Slice * @param period_dither Boolean instruction on dithering of period match * @param duty_dither Boolean instruction on dithering of compare match * @param spread Dither compare value * @return
* None
* * \parDescription:
* Enables dithering of PWM frequency and duty cycle, by configuring CC4yTC.DITHE and CC4yDITS bits.\n\n * Some control loops are slow in updating PWM frequency and duty cycle. In such a case, a Bresenham style dithering * can help reduce long term errors. Dithering can be applied to period and duty individually, * this can be selected using the parameter \b period_dither and \b duty_dither. * The \b spread would provide the dither compare value. If the dither counter value is less than this \b spread then * the period/compare values would be dithered according to the dither mode selected. This API would invoke * XMC_CCU4_SLICE_SetDitherCompareValue(). * * \parNote:
* After this API call, XMC_CCU4_EnableShadowTransfer() has to be called with appropriate mask * to transfer the dither value. * * \parRelated APIs:
* XMC_CCU4_SLICE_DisableDithering(). */ void XMC_CCU4_SLICE_EnableDithering(XMC_CCU4_SLICE_t *const slice, const bool period_dither, const bool duty_dither, const uint8_t spread); /** * @param slice Constant pointer to CC4 Slice * @return
* None
* * \parDescription:
* Disables dithering of PWM frequency and duty cycle, by clearing CC4yTC.DITHE bits.\n\n * This disables the Dither mode that was set in XMC_CCU4_SLICE_EnableDithering(). * This API will not clear the dither compare value. * * \parRelated APIs:
* XMC_CCU4_SLICE_EnableDithering(). */ __STATIC_INLINE void XMC_CCU4_SLICE_DisableDithering(XMC_CCU4_SLICE_t *const slice) { XMC_ASSERT("XMC_CCU4_SLICE_DisableDithering:Invalid Slice Pointer", XMC_CCU4_IsValidSlice(slice)); slice->TC &= ~((uint32_t) CCU4_CC4_TC_DITHE_Msk); } /** * @param slice Constant pointer to CC4 Slice * @return
* None
* * \parDescription:
* Enables the floating prescaler, by setting CC4yTC.FPE bit.\n\n * The prescaler divider starts with an initial value and increments upon every period match. It keeps incrementing * until a ceiling (prescaler compare value) is hit and thereafter rolls back to the original prescaler divider value.\n * It is necessary to have programmed an initial divider value and a compare value before the feature is enabled. * * \parRelated APIs:
* XMC_CCU4_SLICE_SetFloatingPrescalerCompareValue()
XMC_CCU4_SLICE_DisableFloatingPrescaler()
* XMC_CCU4_SLICE_SetPrescaler(). */ __STATIC_INLINE void XMC_CCU4_SLICE_EnableFloatingPrescaler(XMC_CCU4_SLICE_t *const slice) { XMC_ASSERT("XMC_CCU4_SLICE_EnableFloatingPrescaler:Invalid Slice Pointer", XMC_CCU4_IsValidSlice(slice)); slice->TC |= (uint32_t) CCU4_CC4_TC_FPE_Msk; } /** * @param slice Constant pointer to CC4 Slice * @return
* None
* * \parDescription:
* Disables the floating prescaler, by clearing CC4yTC.FPE bit.\n\n * This would return the prescaler to the normal mode. * The prescaler that would be applied is the value present in CC4yPSC. * * \parRelated APIs:
* XMC_CCU4_SLICE_EnableFloatingPrescaler(). */ __STATIC_INLINE void XMC_CCU4_SLICE_DisableFloatingPrescaler(XMC_CCU4_SLICE_t *const slice) { XMC_ASSERT("XMC_CCU4_SLICE_DisableFloatingPrescaler:Invalid Slice Pointer", XMC_CCU4_IsValidSlice(slice)); slice->TC &= ~((uint32_t) CCU4_CC4_TC_FPE_Msk); } /** * @param slice Constant pointer to CC4 Slice * @param comp_val Dither compare value * Range: [0x0 to 0xF] * @return
* None
* * \parDescription:
* Sets the dither spread/compare value, by setting CC4yDITS.DCVS bits.\n\n * This value is the cornerstone of PWM dithering feature. Dithering is applied/done when the value in the * dithering counter is less than this compare/spread value. For all dithering counter values greater than * the spread value, there is no dithering. After setting the value XMC_CCU4_EnableShadowTransfer() has to be * called with appropriate mask. * * \parRelated APIs:
* XMC_CCU4_SLICE_EnableDithering(). */ __STATIC_INLINE void XMC_CCU4_SLICE_SetDitherCompareValue(XMC_CCU4_SLICE_t *const slice, const uint8_t comp_val) { XMC_ASSERT("XMC_CCU4_SLICE_SetDitherCompareValue:Invalid Slice Pointer", XMC_CCU4_IsValidSlice(slice)); slice->DITS = comp_val; } /** * @param slice Constant pointer to CC4 Slice * @param div_val Prescaler divider value. Accepts enum :: XMC_CCU4_SLICE_PRESCALER_t * Range: [0x0 to 0xF] * @return
* None
* * \parDescription:
* Programs the slice specific prescaler divider, by configuring the CC4yPSC and CC4yFPC registers.\n\n * The prescaler divider may only be programmed after the prescaler run bit has been cleared * by calling XMC_CCU4_StopPrescaler(). * * \parRelated APIs:
* XMC_CCU4_SLICE_SetFloatingPrescalerCompareValue(). */ void XMC_CCU4_SLICE_SetPrescaler(XMC_CCU4_SLICE_t *const slice, const XMC_CCU4_SLICE_PRESCALER_t div_val); /** * @param slice Constant pointer to CC4 Slice * @param cmp_val Prescaler divider compare value * Range: [0x0 to 0xF] * @return
* None
* * \parDescription:
* Programs the slice specific prescaler divider compare value, by configuring CC4yFPCS register.\n\n * The compare value is applicable only in floating mode of operation. The prescaler divider starts with an initial * value and increments to the compare value steadily upon every period match. Once prescaler divider * equals the prescaler divider compare value, the value in the former resets back to the PVAL (from FPC). After setting * the value, XMC_CCU4_EnableShadowTransfer() has to be called with appropriate mask. * * \parRelated APIs:
* XMC_CCU4_SLICE_SetPrescaler(). */ __STATIC_INLINE void XMC_CCU4_SLICE_SetFloatingPrescalerCompareValue(XMC_CCU4_SLICE_t *const slice, const uint8_t cmp_val) { XMC_ASSERT("XMC_CCU4_SLICE_SetFloatingPrescalerCompareValue:Invalid Slice Pointer", XMC_CCU4_IsValidSlice(slice)); /* write to the shadow register */ slice->FPCS = (uint32_t) cmp_val; } /** * @param slice Constant pointer to CC4 Slice * @return
* None
* * \parDescription:
* Enables the multichannel mode, by setting CC4yTC.MCME bit.
\n * The output state of the Timer slices can be controlled in parallel by a single input signal. * A particularly useful feature in motor control applications where the PWM output of multiple slices of a module can * be gated and ungated by multi-channel gating inputs connected to the slices. A peripheral like POSIF connected to the * motor knows exactly which of the power drive switches are to be turned on and off at any instant. It can thus through * a gating bus (known as multi-channel inputs) control which of the slices output stays gated/ungated. * * \parRelated APIs:
* XMC_CCU4_SLICE_DisableMultiChannelMode()
XMC_CCU4_SetMultiChannelShadowTransferMode(). */ __STATIC_INLINE void XMC_CCU4_SLICE_EnableMultiChannelMode(XMC_CCU4_SLICE_t *const slice) { XMC_ASSERT("XMC_CCU4_SLICE_EnableMultiChannelMode:Invalid Slice Pointer", XMC_CCU4_IsValidSlice(slice)); slice->TC |= (uint32_t) CCU4_CC4_TC_MCME_Msk; } /** * @param slice Constant pointer to CC4 Slice * @return
* None
* * \parDescription:
* Disables the multichannel mode, by clearing CC4yTC.MCME bit.
\n * This would return the slices to the normal operation mode. * * \parRelated APIs:
* XMC_CCU4_SLICE_EnableMultiChannelMode(). */ __STATIC_INLINE void XMC_CCU4_SLICE_DisableMultiChannelMode(XMC_CCU4_SLICE_t *const slice) { XMC_ASSERT("XMC_CCU4_SLICE_DisableMultiChannelMode:Invalid Slice Pointer", XMC_CCU4_IsValidSlice(slice)); slice->TC &= ~((uint32_t) CCU4_CC4_TC_MCME_Msk); } /** * @param module Constant pointer to CCU4 module * @param slice_mode_msk Slices for which the configuration has to be applied. * Use ::XMC_CCU4_MULTI_CHANNEL_SHADOW_TRANSFER_t enum items to create a mask of choice, * using a bit wise OR operation. * @return
* None
* * \parDescription:
* Enables the Multi-channel shadow transfer request trigger signal either by software or hardware by configuring * GCTRL.MSE0, GCTRL.MSE1, GCTRL.MSE2, and GCTRL.MSE3 based on the mask.\n\n * The shadow transfer would take place either if it was requested by software or by the CCU4x.MCSS input. * * \parRelated APIs:
* None. */ void XMC_CCU4_SetMultiChannelShadowTransferMode(XMC_CCU4_MODULE_t *const module, const uint32_t slice_mode_msk); /** * @param slice Constant pointer to CC4 Slice * @param reg_num The capture register from which the captured value is to be retrieved * Range: [0,3] * @return
* uint32_t Returns the Capture register value. * Range: [0 to 0x1FFFFF] * * \parDescription:
* Retrieves timer value which has been captured in the Capture registers, by reading CC4yCV[\b reg_num] register.\n\n * The signal whose timing characteristics are to be measured must be mapped to an event which in turn must be mapped * to the capture function. Based on the capture criteria, the timer values are captured into capture registers. Timing * characteristics of the input signal may then be derived/inferred from the captured values. The full flag will help * to find out if there is a new captured value present. * * \parRelated APIs:
* XMC_CCU4_SLICE_GetLastCapturedTimerValue(). */ uint32_t XMC_CCU4_SLICE_GetCaptureRegisterValue(const XMC_CCU4_SLICE_t *const slice, const uint8_t reg_num); /** * @param slice Constant pointer to CC4 Slice * @param set The capture register set, which must be evaluated * @param val_ptr Out Parameter of the API.Stores the captured timer value into this out parameter. * @return
* ::XMC_CCU4_STATUS_t Returns XMC_CCU4_STATUS_OK if there was new value present in the capture registers. * returns XMC_CCU4_STATUS_ERROR if there was no new value present in the capture registers. * * \parDescription:
* Retrieves the latest captured timer value, by reading CC4yCV registers.\n\n * Retrieve the timer value last stored by the slice. When separate capture events are used, * users must specify the capture set to evaluate. If single capture event mode is used, all 4 capture registers are * evaluated.\n * The lowest register is evaluated first followed by the next higher ordered register and this continues until all * capture registers have been evaluated. * * \parRelated APIs:
* XMC_CCU4_SLICE_GetCaptureRegisterValue(). */ XMC_CCU4_STATUS_t XMC_CCU4_SLICE_GetLastCapturedTimerValue(const XMC_CCU4_SLICE_t *const slice, const XMC_CCU4_SLICE_CAP_REG_SET_t set, uint32_t *val_ptr); /** * @param slice Constant pointer to CC4 Slice * @param event Event whose assertion can potentially lead to an interrupt * @return
* None
* * \parDescription:
* Enables the generation of an interrupt pulse for the event, by configuring CC4yINTE register.\n\n * For an event to lead to an interrupt, it must first be enabled and bound to a service request line. The corresponding * NVIC node must be enabled as well. This API merely enables the event. Binding with SR is performed by another API. * * \parRelated APIs:
* XMC_CCU4_SLICE_SetInterruptNode()
XMC_CCU4_SLICE_EnableMultipleEvents()
XMC_CCU4_SLICE_DisableEvent()
* XMC_CCU4_SLICE_DisableMultipleEvents(). */ __STATIC_INLINE void XMC_CCU4_SLICE_EnableEvent(XMC_CCU4_SLICE_t *const slice, const XMC_CCU4_SLICE_IRQ_ID_t event) { XMC_ASSERT("XMC_CCU4_SLICE_EnableEvent:Invalid Slice Pointer", XMC_CCU4_IsValidSlice(slice)); XMC_ASSERT("XMC_CCU4_SLICE_EnableEvent:Invalid SR event", XMC_CCU4_SLICE_CHECK_INTERRUPT(event)); slice->INTE |= ((uint32_t) 1) << ((uint32_t) event); } /** * @param slice Constant pointer to CC4 Slice * @param intr_mask Event mask such that multiple events can be enabled. * Use ::XMC_CCU4_SLICE_MULTI_IRQ_ID_t enum items to create a mask of choice, * using a bit wise OR operation. * @return
* None
* * \parDescription:
* Enables the generation of an interrupt pulse for the required events, by configuring CC4yINTE register.\n\n * For an event to lead to an interrupt, it must first be enabled and bound to a service request line. The corresponding * NVIC node must be enabled as well. This API merely enables the events. Binding with SR is performed by another API. * * \parRelated APIs:
* XMC_CCU4_SLICE_SetInterruptNode()
XMC_CCU4_SLICE_EnableEvent()
XMC_CCU4_SLICE_DisableEvent()
* XMC_CCU4_SLICE_DisableMultipleEvents(). */ __STATIC_INLINE void XMC_CCU4_SLICE_EnableMultipleEvents(XMC_CCU4_SLICE_t *const slice, const uint16_t intr_mask) { XMC_ASSERT("XMC_CCU4_SLICE_EnableMultipleEvents:Invalid Slice Pointer", XMC_CCU4_IsValidSlice(slice)); slice->INTE |= (uint32_t)intr_mask; } /** * @param slice Constant pointer to CC4 Slice * @param event Event whose assertion can potentially lead to an interrupt * @return
* None
* * \parDescription:
* Disables the generation of an interrupt pulse for the event, by clearing CC4yINTE register.\n\n * Prevents the event from being asserted * * \parRelated APIs:
* XMC_CCU4_SLICE_SetInterruptNode()
XMC_CCU4_SLICE_EnableEvent()
XMC_CCU4_SLICE_EnableMultipleEvents()
* XMC_CCU4_SLICE_DisableMultipleEvents(). */ __STATIC_INLINE void XMC_CCU4_SLICE_DisableEvent(XMC_CCU4_SLICE_t *const slice, const XMC_CCU4_SLICE_IRQ_ID_t event) { XMC_ASSERT("XMC_CCU4_SLICE_DisableEvent:Invalid Slice Pointer", XMC_CCU4_IsValidSlice(slice)); XMC_ASSERT("XMC_CCU4_SLICE_DisableEvent:Invalid SR event", XMC_CCU4_SLICE_CHECK_INTERRUPT(event)); slice->INTE &= ~(((uint32_t) 1) << ((uint32_t) event)); } /** * @param slice Constant pointer to CC4 Slice * @param mask Event mask such that multiple events can be enabled. * Use ::XMC_CCU4_SLICE_MULTI_IRQ_ID_t enum items to create a mask of choice, * using a bit wise OR operation. * @return
* None
* * \parDescription:
* Disables the generation of an interrupt pulse for the required events, by clearing CC4yINTE register.\n\n * Prevents selected events of the slice from being asserted. * * \parRelated APIs:
* XMC_CCU4_SLICE_SetInterruptNode()
XMC_CCU4_SLICE_EnableEvent()
XMC_CCU4_SLICE_EnableMultipleEvents()
* XMC_CCU4_SLICE_DisableEvent(). */ __STATIC_INLINE void XMC_CCU4_SLICE_DisableMultipleEvents(XMC_CCU4_SLICE_t *const slice, const uint16_t mask) { XMC_ASSERT("XMC_CCU4_SLICE_DisableMultipleEvents:Invalid Slice Pointer", XMC_CCU4_IsValidSlice(slice)); slice->INTE &= ~((uint32_t) mask); } /** * @param slice Constant pointer to CC4 Slice * @param event Event whose assertion can potentially lead to an interrupt * @return
* None
* * \parDescription:
* Manually asserts the requested event, by setting CC4ySWS register.\n\n * For an event to lead to an interrupt, it must first be enabled and bound to a service request line. The corresponding * NVIC node must be enabled as well. This API manually asserts the requested event. * * \parRelated APIs:
* XMC_CCU4_SLICE_SetInterruptNode()
XMC_CCU4_SLICE_EnableEvent()
XMC_CCU4_SLICE_EnableMultipleEvents(). */ __STATIC_INLINE void XMC_CCU4_SLICE_SetEvent(XMC_CCU4_SLICE_t *const slice, const XMC_CCU4_SLICE_IRQ_ID_t event) { XMC_ASSERT("XMC_CCU4_SLICE_SetEvent:Invalid Slice Pointer", XMC_CCU4_IsValidSlice(slice)); XMC_ASSERT("XMC_CCU4_SLICE_SetEvent:Invalid SR event", XMC_CCU4_SLICE_CHECK_INTERRUPT(event)); slice->SWS |= ((uint32_t) 1) << ((uint32_t) event); } /** * @param slice Constant pointer to CC4 Slice * @param event Asserted event which must be acknowledged. * @return
* None
* * \parDescription:
* Acknowledges an asserted event, by setting CC4ySWR with respective event flag.\n\n * * \parRelated APIs:
* XMC_CCU4_SLICE_EnableEvent()
XMC_CCU4_SLICE_SetEvent()
XMC_CCU4_SLICE_GetEvent(). */ __STATIC_INLINE void XMC_CCU4_SLICE_ClearEvent(XMC_CCU4_SLICE_t *const slice, const XMC_CCU4_SLICE_IRQ_ID_t event) { XMC_ASSERT("XMC_CCU4_SLICE_ClearEvent:Invalid Slice Pointer", XMC_CCU4_IsValidSlice(slice)); XMC_ASSERT("XMC_CCU4_SLICE_ClearEvent:Invalid SR event", XMC_CCU4_SLICE_CHECK_INTERRUPT(event)); slice->SWR |= ((uint32_t) 1) << ((uint32_t) event); } /** * @param slice Constant pointer to CC4 Slice * @param event Event to be evaluated for assertion * @return
* bool Returns true if event is set else false is returned. * * \parDescription:
* Evaluates if a given event is asserted or not, by reading CC4yINTS register.\n\n * Return true if the event is asserted. For a event to be asserted it has to be * first enabled. Only if that event is enabled the call to this API is valid. * If the Event is enabled and has not yet occurred then a false is returned. * * \parRelated APIs:
* XMC_CCU4_SLICE_EnableEvent()
XMC_CCU4_SLICE_SetEvent(). */ __STATIC_INLINE bool XMC_CCU4_SLICE_GetEvent(const XMC_CCU4_SLICE_t *const slice, const XMC_CCU4_SLICE_IRQ_ID_t event) { XMC_ASSERT("XMC_CCU4_SLICE_GetEvent:Invalid Slice Pointer", XMC_CCU4_IsValidSlice(slice)); XMC_ASSERT("XMC_CCU4_SLICE_GetEvent:Invalid SR event", XMC_CCU4_SLICE_CHECK_INTERRUPT(event)); return(((uint32_t)(slice->INTS & ((uint32_t)1 << (uint32_t)event))) != 0U); } /** * @param slice Constant pointer to CC4 Slice * @param event Event which must be bound to a service request line * @param sr The Service request line which is bound to the \b event * @return
* None
* * \parDescription:
* Binds requested event to a service request line, by configuring CC4ySRS register with respective event.\n\n * For an event to lead to an interrupt, it must first be enabled and bound to a service request line. The corresponding * NVIC node must be enabled as well. This API binds the requested event with the requested service request line(\b sr). * * \parRelated APIs:
* XMC_CCU4_SLICE_EnableEvent()
XMC_CCU4_SLICE_SetEvent(). */ void XMC_CCU4_SLICE_SetInterruptNode(XMC_CCU4_SLICE_t *const slice, const XMC_CCU4_SLICE_IRQ_ID_t event, const XMC_CCU4_SLICE_SR_ID_t sr); /** * @param slice Constant pointer to CC4 Slice * @param level Slice output passive level * @return
* None
* * \parDescription:
* Configures the passive level for the slice output, by setting CC4yPSL register.\n\n * Defines the passive level for the timer slice output pin. Selects either level high is passive * or level low is passive. This is the level of the output before the compare match is value changes it. * * \parRelated APIs:
* XMC_CCU4_SLICE_EnableEvent()
XMC_CCU4_SLICE_SetEvent(). */ void XMC_CCU4_SLICE_SetPassiveLevel(XMC_CCU4_SLICE_t *const slice, const XMC_CCU4_SLICE_OUTPUT_PASSIVE_LEVEL_t level); #if defined(CCU4V3) || defined(DOXYGEN) /* Defined for XMC1400 devices only */ /** * @param slice Constant pointer to CC4 Slice * * @return
* None
* * \parDescription:
* Cascades the shadow transfer operation throughout the CCU4 timer slices, by setting CSE bit in STC register.\n\n * * The shadow transfer enable bits needs to be set in all timer slices, that are being used in the cascaded architecture, * at the same time. The shadow transfer enable bits, also need to be set for all slices even if the shadow values of * some slices were not updated. It is possible to to cascade with the adjacent slices only. CC40 slice is a * master to start the operation. * * \parNote:
* XMC_CCU4_EnableShadowTransfer() must be called to enable the shadow transfer of the all the slices, which needs to be * cascaded. * * \parRelated APIs:
* XMC_CCU4_EnableShadowTransfer(), XMC_CCU4_SLICE_DisableCascadedShadowTransfer()
. * @note Only available for XMC1400 series */ __STATIC_INLINE void XMC_CCU4_SLICE_EnableCascadedShadowTransfer(XMC_CCU4_SLICE_t *const slice) { XMC_ASSERT("XMC_CCU4_SLICE_EnableCascadedShadowTransfer:Invalid Slice Pointer", XMC_CCU4_IsValidSlice(slice)); slice->STC |= (uint32_t) CCU4_CC4_STC_CSE_Msk; } /** * @param slice Constant pointer to CC4 Slice * * @return
* None
* * \parDescription:
* Disables the cascaded the shadow transfer operation, by clearing CSE bit in STC register.\n\n * * If in any slice the cascaded mode disabled, other slices from there onwards does not update the values in cascaded mode. * * \parRelated APIs:
* XMC_CCU4_SLICE_EnableCascadedShadowTransfer()
. * @note Only available for XMC1400 series */ __STATIC_INLINE void XMC_CCU4_SLICE_DisableCascadedShadowTransfer(XMC_CCU4_SLICE_t *const slice) { XMC_ASSERT("XMC_CCU4_SLICE_DisableCascadedShadowTransfer:Invalid Slice Pointer", XMC_CCU4_IsValidSlice(slice)); slice->STC &= ~(uint32_t) CCU4_CC4_STC_CSE_Msk; } /** * @param slice Constant pointer to CC4 Slice * @param shadow_transfer_mode mode to be configured * Use :: XMC_CCU4_SLICE_SHADOW_TRANSFER_MODE_t enum items for mode * @return
* None
* * \parDescription:
* Configures when the shadow transfer has to occur, by setting STM bit in STC register.\n\n * * After requesting for shadow transfer mode using XMC_CCU4_EnableShadowTransfer(), actual transfer occurs based on the * selection done using this API (i.e. on period and One match, on Period match only, on One match only). * * \parNote:
* This is effective when the timer is configured in centre aligned mode. * * \parRelated APIs:
* XMC_CCU4_EnableShadowTransfer()
* @note Only available for XMC1400 series */ __STATIC_INLINE void XMC_CCU4_SLICE_SetShadowTransferMode(XMC_CCU4_SLICE_t *const slice, const XMC_CCU4_SLICE_SHADOW_TRANSFER_MODE_t shadow_transfer_mode) { XMC_ASSERT("XMC_CCU4_SLICE_SetShadowTransferMode:Invalid Slice Pointer", XMC_CCU4_IsValidSlice(slice)); slice->STC = ((slice->STC) & ~(uint32_t)((uint32_t)CCU4_CC4_STC_STM_Msk << (uint32_t)CCU4_CC4_STC_STM_Pos)) | ((shadow_transfer_mode << CCU4_CC4_STC_STM_Pos) & (uint32_t)CCU4_CC4_STC_STM_Msk); } /** * @param slice Constant pointer to CC4 Slice * @param coherent_write specifies for what fields this mode has to be applied * Use :: XMC_CCU4_SLICE_WRITE_INTO_t enum items to create a mask of choice, using a bit wise OR operation. * @return
* None
* * \parDescription:
* Configures the specified fields shadow value to be updated in synchronous with PWM after shadow transfer request, by * clearing IRPC, IRCC1, IRCC2, IRLC, IRDC, IRFC bits in STC register.\n\n * * When coherent shadow is enabled, after calling XMC_CCU4_EnableShadowTransfer(), the value which are written in the * respective shadow registers get updated according the configuration done using XMC_CCU4_SLICE_SetShadowTransferMode() * API. \parNote:
* * \parRelated APIs:
* XMC_CCU4_EnableShadowTransfer(), XMC_CCU4_SLICE_SetShadowTransferMode()
* @note Only available for XMC1400 series */ __STATIC_INLINE void XMC_CCU4_SLICE_WriteCoherentlyWithPWMCycle(XMC_CCU4_SLICE_t *const slice, const uint32_t coherent_write) { XMC_ASSERT("XMC_CCU4_SLICE_WriteCoherentlyWithPWMCycle:Invalid Slice Pointer", XMC_CCU4_IsValidSlice(slice)); slice->STC &= ~(uint32_t)coherent_write; } /** * @param slice Constant pointer to CC4 Slice * @param immediate_write specifies for what fields this mode has to be applied * Use :: XMC_CCU4_SLICE_WRITE_INTO_t enum items to create a mask of choice, using a bit wise OR operation. * @return
* None
* * \parDescription:
* Configures the specified fields shadow value to be updated immediately after shadow transfer request, by setting * IRPC, IRCC1, IRCC2, IRLC, IRDC, IRFC bits in STC register.\n\n * * When immediate shadow is enabled, by calling XMC_CCU4_EnableShadowTransfer() the value which are written in the * shadow registers get updated to the actual registers immediately. \parNote:
* * \parRelated APIs:
* XMC_CCU4_EnableShadowTransfer()
* @note Only available for XMC1400 series */ __STATIC_INLINE void XMC_CCU4_SLICE_WriteImmediateAfterShadowTransfer(XMC_CCU4_SLICE_t *const slice, const uint32_t immediate_write) { XMC_ASSERT("XMC_CCU4_SLICE_WriteImmediateAfterShadowTransfer:Invalid Slice Pointer", XMC_CCU4_IsValidSlice(slice)); slice->STC |= immediate_write; } /** * @param slice Constant pointer to CC4 Slice * @param automatic_shadow_transfer specify upon which register update, automatic shadow transfer request is generated * Use :: XMC_CCU4_SLICE_AUTOMAIC_SHADOW_TRANSFER_WRITE_INTO_t enum items to create a mask of choice, using a * bit wise OR operation. * @return
* None
* * \parDescription:
* Configure on which shadow register update, automatic shadow transfer request generation has to be enabled. By setting * ASPC, ASCC1, ASCC2, ASLC, ASDC, ASFC bits in STC register.\n\n * * By updating the configured shadow register, the shadow transfer request is generated to update all the shadow registers. * \parNote:
* * \parRelated APIs:
* XMC_CCU4_SLICE_DisableAutomaticShadowTransferRequest(). * @note Only available for XMC1400 series */ __STATIC_INLINE void XMC_CCU4_SLICE_EnableAutomaticShadowTransferRequest(XMC_CCU4_SLICE_t *const slice, const uint32_t automatic_shadow_transfer) { XMC_ASSERT("XMC_CCU4_SLICE_EnableAutomaticShadowTransferRequest:Invalid Slice Pointer", XMC_CCU4_IsValidSlice(slice)); slice->STC |= automatic_shadow_transfer; } /** * @param slice Constant pointer to CC4 Slice * @param automatic_shadow_transfer specify upon which register update, automatic shadow transfer request should not be * generated * Use :: XMC_CCU4_SLICE_AUTOMAIC_SHADOW_TRANSFER_WRITE_INTO_t enum items to create a mask of choice, using a * bit wise OR operation. * @return
* None
* * \parDescription:
* Configure on which shadow register update, automatic shadow transfer request generation has to be disabled. By * clearing ASPC, ASCC1, ASCC2, ASLC, ASDC, ASFC bits in STC register.\n\n * * This disables the generation of automatic shadow transfer request for the specified register update. * \parNote:
* * \parRelated APIs:
* XMC_CCU4_SLICE_EnableAutomaticShadowTransferRequest(). * @note Only available for XMC1400 series */ __STATIC_INLINE void XMC_CCU4_SLICE_DisableAutomaticShadowTransferRequest(XMC_CCU4_SLICE_t *const slice, const uint32_t automatic_shadow_transfer) { XMC_ASSERT("XMC_CCU4_SLICE_DisableAutomaticShadowTransferRequest:Invalid Slice Pointer", XMC_CCU4_IsValidSlice(slice)); slice->STC &= ~(uint32_t)automatic_shadow_transfer; } #endif #ifdef __cplusplus } #endif /** * @} */ /** * @} */ #endif /* defined(CCU40) */ #endif /* CCU4_H */