/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_mat_sub_q31.c * Description: Q31 matrix subtraction * * $Date: 27. January 2017 * $Revision: V.1.5.1 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_math.h" /** * @ingroup groupMatrix */ /** * @addtogroup MatrixSub * @{ */ /** * @brief Q31 matrix subtraction. * @param[in] *pSrcA points to the first input matrix structure * @param[in] *pSrcB points to the second input matrix structure * @param[out] *pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. * * <b>Scaling and Overflow Behavior:</b> * \par * The function uses saturating arithmetic. * Results outside of the allowable Q31 range [0x80000000 0x7FFFFFFF] will be saturated. */ arm_status arm_mat_sub_q31( const arm_matrix_instance_q31 * pSrcA, const arm_matrix_instance_q31 * pSrcB, arm_matrix_instance_q31 * pDst) { q31_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */ q31_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */ q31_t *pOut = pDst->pData; /* output data matrix pointer */ q31_t inA1, inB1; /* temporary variables */ #if defined (ARM_MATH_DSP) q31_t inA2, inB2; /* temporary variables */ q31_t out1, out2; /* temporary variables */ #endif // #if defined (ARM_MATH_DSP) uint32_t numSamples; /* total number of elements in the matrix */ uint32_t blkCnt; /* loop counters */ arm_status status; /* status of matrix subtraction */ #ifdef ARM_MATH_MATRIX_CHECK /* Check for matrix mismatch condition */ if ((pSrcA->numRows != pSrcB->numRows) || (pSrcA->numCols != pSrcB->numCols) || (pSrcA->numRows != pDst->numRows) || (pSrcA->numCols != pDst->numCols)) { /* Set status as ARM_MATH_SIZE_MISMATCH */ status = ARM_MATH_SIZE_MISMATCH; } else #endif { /* Total number of samples in the input matrix */ numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols; #if defined (ARM_MATH_DSP) /* Run the below code for Cortex-M4 and Cortex-M3 */ /* Loop Unrolling */ blkCnt = numSamples >> 2u; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while (blkCnt > 0u) { /* C(m,n) = A(m,n) - B(m,n) */ /* Subtract, saturate and then store the results in the destination buffer. */ /* Read values from source A */ inA1 = pIn1[0]; /* Read values from source B */ inB1 = pIn2[0]; /* Read values from source A */ inA2 = pIn1[1]; /* Subtract and saturate */ out1 = __QSUB(inA1, inB1); /* Read values from source B */ inB2 = pIn2[1]; /* Read values from source A */ inA1 = pIn1[2]; /* Subtract and saturate */ out2 = __QSUB(inA2, inB2); /* Read values from source B */ inB1 = pIn2[2]; /* Store result in destination */ pOut[0] = out1; pOut[1] = out2; /* Read values from source A */ inA2 = pIn1[3]; /* Read values from source B */ inB2 = pIn2[3]; /* Subtract and saturate */ out1 = __QSUB(inA1, inB1); /* Subtract and saturate */ out2 = __QSUB(inA2, inB2); /* Store result in destination */ pOut[2] = out1; pOut[3] = out2; /* update pointers to process next samples */ pIn1 += 4u; pIn2 += 4u; pOut += 4u; /* Decrement the loop counter */ blkCnt--; } /* If the numSamples is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = numSamples % 0x4u; #else /* Run the below code for Cortex-M0 */ /* Initialize blkCnt with number of samples */ blkCnt = numSamples; #endif /* #if defined (ARM_MATH_DSP) */ while (blkCnt > 0u) { /* C(m,n) = A(m,n) - B(m,n) */ /* Subtract, saturate and then store the results in the destination buffer. */ inA1 = *pIn1++; inB1 = *pIn2++; inA1 = __QSUB(inA1, inB1); *pOut++ = inA1; /* Decrement the loop counter */ blkCnt--; } /* Set status as ARM_MATH_SUCCESS */ status = ARM_MATH_SUCCESS; } /* Return to application */ return (status); } /** * @} end of MatrixSub group */