127 lines
3.9 KiB
C
127 lines
3.9 KiB
C
/* ----------------------------------------------------------------------
|
|
* Project: CMSIS DSP Library
|
|
* Title: arm_power_q7.c
|
|
* Description: Sum of the squares of the elements of a Q7 vector
|
|
*
|
|
* $Date: 27. January 2017
|
|
* $Revision: V.1.5.1
|
|
*
|
|
* Target Processor: Cortex-M cores
|
|
* -------------------------------------------------------------------- */
|
|
/*
|
|
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the License); you may
|
|
* not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "arm_math.h"
|
|
|
|
/**
|
|
* @ingroup groupStats
|
|
*/
|
|
|
|
/**
|
|
* @addtogroup power
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Sum of the squares of the elements of a Q7 vector.
|
|
* @param[in] *pSrc points to the input vector
|
|
* @param[in] blockSize length of the input vector
|
|
* @param[out] *pResult sum of the squares value returned here
|
|
* @return none.
|
|
*
|
|
* @details
|
|
* <b>Scaling and Overflow Behavior:</b>
|
|
*
|
|
* \par
|
|
* The function is implemented using a 32-bit internal accumulator.
|
|
* The input is represented in 1.7 format.
|
|
* Intermediate multiplication yields a 2.14 format, and this
|
|
* result is added without saturation to an accumulator in 18.14 format.
|
|
* With 17 guard bits in the accumulator, there is no risk of overflow, and the
|
|
* full precision of the intermediate multiplication is preserved.
|
|
* Finally, the return result is in 18.14 format.
|
|
*
|
|
*/
|
|
|
|
void arm_power_q7(
|
|
q7_t * pSrc,
|
|
uint32_t blockSize,
|
|
q31_t * pResult)
|
|
{
|
|
q31_t sum = 0; /* Temporary result storage */
|
|
q7_t in; /* Temporary variable to store input */
|
|
uint32_t blkCnt; /* loop counter */
|
|
|
|
#if defined (ARM_MATH_DSP)
|
|
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
|
|
|
q31_t input1; /* Temporary variable to store packed input */
|
|
q31_t in1, in2; /* Temporary variables to store input */
|
|
|
|
/*loop Unrolling */
|
|
blkCnt = blockSize >> 2u;
|
|
|
|
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
|
** a second loop below computes the remaining 1 to 3 samples. */
|
|
while (blkCnt > 0u)
|
|
{
|
|
/* Reading two inputs of pSrc vector and packing */
|
|
input1 = *__SIMD32(pSrc)++;
|
|
|
|
in1 = __SXTB16(__ROR(input1, 8));
|
|
in2 = __SXTB16(input1);
|
|
|
|
/* C = A[0] * A[0] + A[1] * A[1] + A[2] * A[2] + ... + A[blockSize-1] * A[blockSize-1] */
|
|
/* calculate power and accumulate to accumulator */
|
|
sum = __SMLAD(in1, in1, sum);
|
|
sum = __SMLAD(in2, in2, sum);
|
|
|
|
/* Decrement the loop counter */
|
|
blkCnt--;
|
|
}
|
|
|
|
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
|
** No loop unrolling is used. */
|
|
blkCnt = blockSize % 0x4u;
|
|
|
|
#else
|
|
/* Run the below code for Cortex-M0 */
|
|
|
|
/* Loop over blockSize number of values */
|
|
blkCnt = blockSize;
|
|
|
|
#endif /* #if defined (ARM_MATH_DSP) */
|
|
|
|
while (blkCnt > 0u)
|
|
{
|
|
/* C = A[0] * A[0] + A[1] * A[1] + A[2] * A[2] + ... + A[blockSize-1] * A[blockSize-1] */
|
|
/* Compute Power and then store the result in a temporary variable, sum. */
|
|
in = *pSrc++;
|
|
sum += ((q15_t) in * in);
|
|
|
|
/* Decrement the loop counter */
|
|
blkCnt--;
|
|
}
|
|
|
|
/* Store the result in 18.14 format */
|
|
*pResult = sum;
|
|
}
|
|
|
|
/**
|
|
* @} end of power group
|
|
*/
|