xmclib/CMSIS/RTOS2/RTX/Source/rtx_thread.c
2024-10-17 17:09:59 +02:00

1693 lines
50 KiB
C

/*
* Copyright (c) 2013-2017 ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* -----------------------------------------------------------------------------
*
* Project: CMSIS-RTOS RTX
* Title: Thread functions
*
* -----------------------------------------------------------------------------
*/
#include "rtx_lib.h"
// ==== Helper functions ====
/// Set Thread Flags.
/// \param[in] thread thread object.
/// \param[in] flags specifies the flags to set.
/// \return thread flags after setting.
static uint32_t ThreadFlagsSet (os_thread_t *thread, uint32_t flags) {
#if (__EXCLUSIVE_ACCESS == 0U)
uint32_t primask = __get_PRIMASK();
#endif
uint32_t thread_flags;
#if (__EXCLUSIVE_ACCESS == 0U)
__disable_irq();
thread->thread_flags |= flags;
thread_flags = thread->thread_flags;
if (primask == 0U) {
__enable_irq();
}
#else
thread_flags = atomic_set32(&thread->thread_flags, flags);
#endif
return thread_flags;
}
/// Clear Thread Flags.
/// \param[in] thread thread object.
/// \param[in] flags specifies the flags to clear.
/// \return thread flags before clearing.
static uint32_t ThreadFlagsClear (os_thread_t *thread, uint32_t flags) {
#if (__EXCLUSIVE_ACCESS == 0U)
uint32_t primask = __get_PRIMASK();
#endif
uint32_t thread_flags;
#if (__EXCLUSIVE_ACCESS == 0U)
__disable_irq();
thread_flags = thread->thread_flags;
thread->thread_flags &= ~flags;
if (primask == 0U) {
__enable_irq();
}
#else
thread_flags = atomic_clr32(&thread->thread_flags, flags);
#endif
return thread_flags;
}
/// Check Thread Flags.
/// \param[in] thread thread object.
/// \param[in] flags specifies the flags to check.
/// \param[in] options specifies flags options (osFlagsXxxx).
/// \return thread flags before clearing or 0 if specified flags have not been set.
static uint32_t ThreadFlagsCheck (os_thread_t *thread, uint32_t flags, uint32_t options) {
#if (__EXCLUSIVE_ACCESS == 0U)
uint32_t primask;
#endif
uint32_t thread_flags;
if ((options & osFlagsNoClear) == 0U) {
#if (__EXCLUSIVE_ACCESS == 0U)
primask = __get_PRIMASK();
__disable_irq();
thread_flags = thread->thread_flags;
if ((((options & osFlagsWaitAll) != 0U) && ((thread_flags & flags) != flags)) ||
(((options & osFlagsWaitAll) == 0U) && ((thread_flags & flags) == 0U))) {
thread_flags = 0U;
} else {
thread->thread_flags &= ~flags;
}
if (primask == 0U) {
__enable_irq();
}
#else
if ((options & osFlagsWaitAll) != 0U) {
thread_flags = atomic_chk32_all(&thread->thread_flags, flags);
} else {
thread_flags = atomic_chk32_any(&thread->thread_flags, flags);
}
#endif
} else {
thread_flags = thread->thread_flags;
if ((((options & osFlagsWaitAll) != 0U) && ((thread_flags & flags) != flags)) ||
(((options & osFlagsWaitAll) == 0U) && ((thread_flags & flags) == 0U))) {
thread_flags = 0U;
}
}
return thread_flags;
}
// ==== Library functions ====
/// Put a Thread into specified Object list sorted by Priority (Highest at Head).
/// \param[in] object generic object.
/// \param[in] thread thread object.
void osRtxThreadListPut (volatile os_object_t *object, os_thread_t *thread) {
os_thread_t *prev, *next;
int32_t priority;
if (thread == NULL) {
return;
}
priority = thread->priority;
prev = (os_thread_t *)(uint32_t)object;
next = object->thread_list;
while ((next != NULL) && (next->priority >= priority)) {
prev = next;
next = next->thread_next;
}
thread->thread_prev = prev;
thread->thread_next = next;
prev->thread_next = thread;
if (next != NULL) {
next->thread_prev = thread;
}
}
/// Get a Thread with Highest Priority from specified Object list and remove it.
/// \param[in] object generic object.
/// \return thread object.
os_thread_t *osRtxThreadListGet (volatile os_object_t *object) {
os_thread_t *thread;
thread = object->thread_list;
if (thread != NULL) {
object->thread_list = thread->thread_next;
if (thread->thread_next != NULL) {
thread->thread_next->thread_prev = (os_thread_t *)(uint32_t)object;
}
thread->thread_prev = NULL;
}
return thread;
}
/// Retrieve Thread list root.
/// \param[in] thread thread object.
void *osRtxThreadListRoot (os_thread_t *thread) {
while ((thread != NULL) && (thread->id == osRtxIdThread)) {
thread = thread->thread_prev;
}
return ((void *)thread);
}
/// Re-sort a Thread in linked Object list by Priority (Highest at Head).
/// \param[in] thread thread object.
void osRtxThreadListSort (os_thread_t *thread) {
os_object_t *object;
os_thread_t *thread0;
// Search for object
thread0 = thread;
while (thread0->id == osRtxIdThread) {
thread0 = thread0->thread_prev;
if (thread0 == NULL) {
return;
}
}
object = (os_object_t *)thread0;
osRtxThreadListRemove(thread);
osRtxThreadListPut(object, thread);
}
/// Remove a Thread from linked Object list.
/// \param[in] thread thread object.
void osRtxThreadListRemove (os_thread_t *thread) {
if (thread->thread_prev != NULL) {
thread->thread_prev->thread_next = thread->thread_next;
if (thread->thread_next != NULL) {
thread->thread_next->thread_prev = thread->thread_prev;
}
thread->thread_prev = NULL;
}
}
/// Unlink a Thread from specified linked list.
/// \param[in] thread thread object.
void osRtxThreadListUnlink (os_thread_t **thread_list, os_thread_t *thread) {
if (thread->thread_next != NULL) {
thread->thread_next->thread_prev = thread->thread_prev;
}
if (thread->thread_prev != NULL) {
thread->thread_prev->thread_next = thread->thread_next;
thread->thread_prev = NULL;
} else {
*thread_list = thread->thread_next;
}
}
/// Mark a Thread as Ready and put it into Ready list (sorted by Priority).
/// \param[in] thread thread object.
void osRtxThreadReadyPut (os_thread_t *thread) {
thread->state = osRtxThreadReady;
osRtxThreadListPut(&osRtxInfo.thread.ready, thread);
}
/// Insert a Thread into the Delay list sorted by Delay (Lowest at Head).
/// \param[in] thread thread object.
/// \param[in] delay delay value.
void osRtxThreadDelayInsert (os_thread_t *thread, uint32_t delay) {
os_thread_t *prev, *next;
if (delay == osWaitForever) {
prev = NULL;
next = osRtxInfo.thread.wait_list;
while (next != NULL) {
prev = next;
next = next->delay_next;
}
thread->delay = delay;
thread->delay_prev = prev;
thread->delay_next = next;
if (prev != NULL) {
prev->delay_next = thread;
} else {
osRtxInfo.thread.wait_list = thread;
}
if (next != NULL) {
next->delay_prev = thread;
}
} else {
prev = NULL;
next = osRtxInfo.thread.delay_list;
while ((next != NULL) && (next->delay <= delay)) {
delay -= next->delay;
prev = next;
next = next->delay_next;
}
thread->delay = delay;
thread->delay_prev = prev;
thread->delay_next = next;
if (prev != NULL) {
prev->delay_next = thread;
} else {
osRtxInfo.thread.delay_list = thread;
}
if (next != NULL) {
next->delay -= delay;
next->delay_prev = thread;
}
}
}
/// Remove a Thread from the Delay list.
/// \param[in] thread thread object.
void osRtxThreadDelayRemove (os_thread_t *thread) {
if (thread->delay == osWaitForever) {
if ((thread->delay_prev == NULL) && (osRtxInfo.thread.wait_list != thread)) {
return;
}
if (thread->delay_next != NULL) {
thread->delay_next->delay_prev = thread->delay_prev;
}
if (thread->delay_prev != NULL) {
thread->delay_prev->delay_next = thread->delay_next;
thread->delay_prev = NULL;
} else {
osRtxInfo.thread.wait_list = thread->delay_next;
}
} else {
if ((thread->delay_prev == NULL) && (osRtxInfo.thread.delay_list != thread)) {
return;
}
if (thread->delay_next != NULL) {
thread->delay_next->delay += thread->delay;
thread->delay_next->delay_prev = thread->delay_prev;
}
if (thread->delay_prev != NULL) {
thread->delay_prev->delay_next = thread->delay_next;
thread->delay_prev = NULL;
} else {
osRtxInfo.thread.delay_list = thread->delay_next;
}
}
}
/// Process Thread Delay Tick (executed each System Tick).
void osRtxThreadDelayTick (void) {
os_thread_t *thread;
thread = osRtxInfo.thread.delay_list;
if (thread == NULL) {
return;
}
thread->delay--;
if (thread->delay == 0U) {
do {
switch (thread->state) {
case osRtxThreadWaitingDelay:
EvrRtxThreadDelayCompleted();
break;
case osRtxThreadWaitingThreadFlags:
EvrRtxThreadFlagsWaitTimeout();
break;
case osRtxThreadWaitingEventFlags:
EvrRtxEventFlagsWaitTimeout((osEventFlagsId_t)osRtxThreadListRoot(thread));
break;
case osRtxThreadWaitingMutex:
EvrRtxMutexAcquireTimeout((osMutexId_t)osRtxThreadListRoot(thread));
break;
case osRtxThreadWaitingSemaphore:
EvrRtxSemaphoreAcquireTimeout((osSemaphoreId_t)osRtxThreadListRoot(thread));
break;
case osRtxThreadWaitingMemoryPool:
EvrRtxMemoryPoolAllocTimeout((osMemoryPoolId_t)osRtxThreadListRoot(thread));
break;
case osRtxThreadWaitingMessageGet:
EvrRtxMessageQueueGetTimeout((osMessageQueueId_t)osRtxThreadListRoot(thread));
break;
case osRtxThreadWaitingMessagePut:
EvrRtxMessageQueuePutTimeout((osMessageQueueId_t)osRtxThreadListRoot(thread));
break;
default:
break;
}
EvrRtxThreadUnblocked(thread, (osRtxThreadRegPtr(thread))[0]);
osRtxThreadListRemove(thread);
osRtxThreadReadyPut(thread);
thread = thread->delay_next;
} while ((thread != NULL) && (thread->delay == 0U));
if (thread != NULL) {
thread->delay_prev = NULL;
}
osRtxInfo.thread.delay_list = thread;
}
}
/// Get pointer to Thread registers (R0..R3)
/// \param[in] thread thread object.
/// \return pointer to registers R0-R3.
uint32_t *osRtxThreadRegPtr (os_thread_t *thread) {
#if (__FPU_USED == 1U)
if (IS_EXTENDED_STACK_FRAME(thread->stack_frame)) {
// Extended Stack Frame: S16-S31, R4-R11, R0-R3, R12, LR, PC, xPSR, S0-S15, FPSCR
return ((uint32_t *)(thread->sp + (16U+8U)*4U));
} else {
// Basic Stack Frame: R4-R11, R0-R3, R12, LR, PC, xPSR
return ((uint32_t *)(thread->sp + 8U *4U));
}
#else
// Stack Frame: R4-R11, R0-R3, R12, LR, PC, xPSR
return ((uint32_t *)(thread->sp + 8U*4U));
#endif
}
/// Block running Thread execution and register it as Ready to Run.
/// \param[in] thread running thread object.
void osRtxThreadBlock (os_thread_t *thread) {
os_thread_t *prev, *next;
int32_t priority;
thread->state = osRtxThreadReady;
priority = thread->priority;
prev = (os_thread_t *)(uint32_t)&osRtxInfo.thread.ready;
next = prev->thread_next;
while ((next != NULL) && (next->priority > priority)) {
prev = next;
next = next->thread_next;
}
thread->thread_prev = prev;
thread->thread_next = next;
prev->thread_next = thread;
if (next != NULL) {
next->thread_prev = thread;
}
}
/// Switch to specified Thread.
/// \param[in] thread thread object.
void osRtxThreadSwitch (os_thread_t *thread) {
thread->state = osRtxThreadRunning;
osRtxInfo.thread.run.next = thread;
osRtxThreadStackCheck();
EvrRtxThreadSwitch(thread);
}
/// Dispatch specified Thread or Ready Thread with Highest Priority.
/// \param[in] thread thread object or NULL.
void osRtxThreadDispatch (os_thread_t *thread) {
uint8_t kernel_state;
os_thread_t *thread_running;
kernel_state = osRtxKernelGetState();
thread_running = osRtxThreadGetRunning();
if (thread == NULL) {
thread = osRtxInfo.thread.ready.thread_list;
if ((kernel_state == osRtxKernelRunning) &&
(thread_running != NULL) && (thread != NULL) &&
(thread->priority > thread_running->priority)) {
// Preempt running Thread
osRtxThreadListRemove(thread);
osRtxThreadBlock(thread_running);
osRtxThreadSwitch(thread);
}
} else {
if ((kernel_state == osRtxKernelRunning) &&
(thread_running != NULL) &&
(thread->priority > thread_running->priority)) {
// Preempt running Thread
osRtxThreadBlock(thread_running);
osRtxThreadSwitch(thread);
} else {
// Put Thread into Ready list
osRtxThreadReadyPut(thread);
}
}
}
/// Exit Thread wait state.
/// \param[in] thread thread object.
/// \param[in] ret_val return value.
/// \param[in] dispatch dispatch flag.
void osRtxThreadWaitExit (os_thread_t *thread, uint32_t ret_val, bool dispatch) {
uint32_t *reg;
EvrRtxThreadUnblocked(thread, ret_val);
reg = osRtxThreadRegPtr(thread);
reg[0] = ret_val;
osRtxThreadDelayRemove(thread);
if (dispatch) {
osRtxThreadDispatch(thread);
} else {
osRtxThreadReadyPut(thread);
}
}
/// Enter Thread wait state.
/// \param[in] state new thread state.
/// \param[in] timeout timeout.
/// \return true - success, false - failure.
bool osRtxThreadWaitEnter (uint8_t state, uint32_t timeout) {
os_thread_t *thread;
thread = osRtxThreadGetRunning();
if (thread == NULL) {
return false;
}
if (osRtxKernelGetState() != osRtxKernelRunning) {
osRtxThreadListRemove(thread);
return false;
}
if (osRtxInfo.thread.ready.thread_list == NULL) {
return false;
}
EvrRtxThreadBlocked(thread, timeout);
thread->state = state;
osRtxThreadDelayInsert(thread, timeout);
thread = osRtxThreadListGet(&osRtxInfo.thread.ready);
osRtxThreadSwitch(thread);
return true;
}
/// Check current running Thread Stack.
__WEAK void osRtxThreadStackCheck (void) {
os_thread_t *thread;
thread = osRtxThreadGetRunning();
if (thread != NULL) {
if ((thread->sp <= (uint32_t)thread->stack_mem) ||
(*((uint32_t *)thread->stack_mem) != osRtxStackMagicWord)) {
osRtxErrorNotify(osRtxErrorStackUnderflow, thread);
}
}
}
/// Thread post ISR processing.
/// \param[in] thread thread object.
void osRtxThreadPostProcess (os_thread_t *thread) {
uint32_t thread_flags;
if ((thread->state == osRtxThreadInactive) ||
(thread->state == osRtxThreadTerminated)) {
return;
}
// Check if Thread is waiting for Thread Flags
if (thread->state == osRtxThreadWaitingThreadFlags) {
thread_flags = ThreadFlagsCheck(thread, thread->wait_flags, thread->flags_options);
if (thread_flags != 0U) {
osRtxThreadWaitExit(thread, thread_flags, false);
EvrRtxThreadFlagsWaitCompleted(thread->wait_flags, thread->flags_options, thread_flags);
}
}
}
// ==== Service Calls ====
// Service Calls definitions
SVC0_3M(ThreadNew, osThreadId_t, osThreadFunc_t, void *, const osThreadAttr_t *)
SVC0_1 (ThreadGetName, const char *, osThreadId_t)
SVC0_0 (ThreadGetId, osThreadId_t)
SVC0_1 (ThreadGetState, osThreadState_t, osThreadId_t)
SVC0_1 (ThreadGetStackSize, uint32_t, osThreadId_t)
SVC0_1 (ThreadGetStackSpace, uint32_t, osThreadId_t)
SVC0_2 (ThreadSetPriority, osStatus_t, osThreadId_t, osPriority_t)
SVC0_1 (ThreadGetPriority, osPriority_t, osThreadId_t)
SVC0_0 (ThreadYield, osStatus_t)
SVC0_1 (ThreadSuspend, osStatus_t, osThreadId_t)
SVC0_1 (ThreadResume, osStatus_t, osThreadId_t)
SVC0_1 (ThreadDetach, osStatus_t, osThreadId_t)
SVC0_1 (ThreadJoin, osStatus_t, osThreadId_t)
SVC0_0N(ThreadExit, void)
SVC0_1 (ThreadTerminate, osStatus_t, osThreadId_t)
SVC0_0 (ThreadGetCount, uint32_t)
SVC0_2 (ThreadEnumerate, uint32_t, osThreadId_t *, uint32_t)
SVC0_2 (ThreadFlagsSet, uint32_t, osThreadId_t, uint32_t)
SVC0_1 (ThreadFlagsClear, uint32_t, uint32_t)
SVC0_0 (ThreadFlagsGet, uint32_t)
SVC0_3 (ThreadFlagsWait, uint32_t, uint32_t, uint32_t, uint32_t)
/// Create a thread and add it to Active Threads.
/// \note API identical to osThreadNew
osThreadId_t svcRtxThreadNew (osThreadFunc_t func, void *argument, const osThreadAttr_t *attr) {
os_thread_t *thread;
uint32_t attr_bits;
void *stack_mem;
uint32_t stack_size;
osPriority_t priority;
uint8_t flags;
const char *name;
uint32_t *ptr;
uint32_t n;
#if (__DOMAIN_NS == 1U)
TZ_ModuleId_t tz_module;
TZ_MemoryId_t tz_memory;
#endif
// Check parameters
if (func == NULL) {
EvrRtxThreadError(NULL, osErrorParameter);
return NULL;
}
// Process attributes
if (attr != NULL) {
name = attr->name;
attr_bits = attr->attr_bits;
thread = attr->cb_mem;
stack_mem = attr->stack_mem;
stack_size = attr->stack_size;
priority = attr->priority;
#if (__DOMAIN_NS == 1U)
tz_module = attr->tz_module;
#endif
if (thread != NULL) {
if (((uint32_t)thread & 3U) || (attr->cb_size < sizeof(os_thread_t))) {
EvrRtxThreadError(NULL, osRtxErrorInvalidControlBlock);
return NULL;
}
} else {
if (attr->cb_size != 0U) {
EvrRtxThreadError(NULL, osRtxErrorInvalidControlBlock);
return NULL;
}
}
if (stack_mem != NULL) {
if (((uint32_t)stack_mem & 7U) || (stack_size == 0U)) {
EvrRtxThreadError(NULL, osRtxErrorInvalidThreadStack);
return NULL;
}
}
if (priority == osPriorityNone) {
priority = osPriorityNormal;
} else {
if ((priority < osPriorityIdle) || (priority > osPriorityISR)) {
EvrRtxThreadError(NULL, osRtxErrorInvalidPriority);
return NULL;
}
}
} else {
name = NULL;
attr_bits = 0U;
thread = NULL;
stack_mem = NULL;
stack_size = 0U;
priority = osPriorityNormal;
#if (__DOMAIN_NS == 1U)
tz_module = 0U;
#endif
}
// Check stack size
if ((stack_size != 0U) && ((stack_size & 7U) || (stack_size < (64U + 8U)))) {
EvrRtxThreadError(NULL, osRtxErrorInvalidThreadStack);
return NULL;
}
// Allocate object memory if not provided
if (thread == NULL) {
if (osRtxInfo.mpi.thread != NULL) {
thread = osRtxMemoryPoolAlloc(osRtxInfo.mpi.thread);
} else {
thread = osRtxMemoryAlloc(osRtxInfo.mem.common, sizeof(os_thread_t), 1U);
}
if (thread == NULL) {
EvrRtxThreadError(NULL, osErrorNoMemory);
return NULL;
}
flags = osRtxFlagSystemObject;
} else {
flags = 0U;
}
// Allocate stack memory if not provided
if (stack_mem == NULL) {
if (stack_size == 0U) {
stack_size = osRtxConfig.thread_stack_size;
if (osRtxInfo.mpi.stack != NULL) {
stack_mem = osRtxMemoryPoolAlloc(osRtxInfo.mpi.stack);
if (stack_mem != NULL) {
flags |= osRtxThreadFlagDefStack;
}
} else {
stack_mem = osRtxMemoryAlloc(osRtxInfo.mem.stack, stack_size, 0U);
}
} else {
stack_mem = osRtxMemoryAlloc(osRtxInfo.mem.stack, stack_size, 0U);
}
if (stack_mem == NULL) {
EvrRtxThreadError(NULL, osErrorNoMemory);
if (flags & osRtxFlagSystemObject) {
if (osRtxInfo.mpi.thread != NULL) {
osRtxMemoryPoolFree(osRtxInfo.mpi.thread, thread);
} else {
osRtxMemoryFree(osRtxInfo.mem.common, thread);
}
}
return NULL;
}
flags |= osRtxFlagSystemMemory;
}
#if (__DOMAIN_NS == 1U)
// Allocate secure process stack
if (tz_module != 0U) {
tz_memory = TZ_AllocModuleContext_S(tz_module);
if (tz_memory == 0U) {
EvrRtxThreadError(NULL, osRtxErrorTZ_AllocContext_S);
if (flags & osRtxFlagSystemMemory) {
if (flags & osRtxThreadFlagDefStack) {
osRtxMemoryPoolFree(osRtxInfo.mpi.stack, thread->stack_mem);
} else {
osRtxMemoryFree(osRtxInfo.mem.stack, thread->stack_mem);
}
}
if (flags & osRtxFlagSystemObject) {
if (osRtxInfo.mpi.thread != NULL) {
osRtxMemoryPoolFree(osRtxInfo.mpi.thread, thread);
} else {
osRtxMemoryFree(osRtxInfo.mem.common, thread);
}
}
return NULL;
}
} else {
tz_memory = 0U;
}
#endif
// Initialize control block
thread->id = osRtxIdThread;
thread->state = osRtxThreadReady;
thread->flags = flags;
thread->attr = (uint8_t)attr_bits;
thread->name = name;
thread->thread_next = NULL;
thread->thread_prev = NULL;
thread->delay_next = NULL;
thread->delay_prev = NULL;
thread->thread_join = NULL;
thread->delay = 0U;
thread->priority = (int8_t)priority;
thread->priority_base = (int8_t)priority;
thread->stack_frame = STACK_FRAME_INIT;
thread->flags_options = 0U;
thread->wait_flags = 0U;
thread->thread_flags = 0U;
thread->mutex_list = NULL;
thread->stack_mem = stack_mem;
thread->stack_size = stack_size;
thread->sp = (uint32_t)stack_mem + stack_size - 64U;
thread->thread_addr = (uint32_t)func;
#if (__DOMAIN_NS == 1U)
thread->tz_memory = tz_memory;
#endif
// Initialize stack
ptr = (uint32_t *)stack_mem;
*ptr++ = osRtxStackMagicWord;
if (osRtxConfig.flags & osRtxConfigStackWatermark) {
for (n = (stack_size/4U) - (16U + 1U); n; n--) {
*ptr++ = osRtxStackFillPattern;
}
} else {
ptr = (uint32_t *)thread->sp;
}
for (n = 13U; n; n--) {
*ptr++ = 0U; // R4..R11, R0..R3, R12
}
*ptr++ = (uint32_t)osThreadExit; // LR
*ptr++ = (uint32_t)func; // PC
*ptr++ = XPSR_INITIAL_VALUE; // xPSR
*(ptr-8) = (uint32_t)argument; // R0
// Register post ISR processing function
osRtxInfo.post_process.thread = osRtxThreadPostProcess;
EvrRtxThreadCreated(thread);
osRtxThreadDispatch(thread);
return thread;
}
/// Get name of a thread.
/// \note API identical to osThreadGetName
const char *svcRtxThreadGetName (osThreadId_t thread_id) {
os_thread_t *thread = (os_thread_t *)thread_id;
// Check parameters
if ((thread == NULL) || (thread->id != osRtxIdThread)) {
EvrRtxThreadGetName(thread, NULL);
return NULL;
}
// Check object state
if (thread->state == osRtxObjectInactive) {
EvrRtxThreadGetName(thread, NULL);
return NULL;
}
EvrRtxThreadGetName(thread, thread->name);
return thread->name;
}
/// Return the thread ID of the current running thread.
/// \note API identical to osThreadGetId
osThreadId_t svcRtxThreadGetId (void) {
os_thread_t *thread;
thread = osRtxThreadGetRunning();
EvrRtxThreadGetId(thread);
return thread;
}
/// Get current thread state of a thread.
/// \note API identical to osThreadGetState
osThreadState_t svcRtxThreadGetState (osThreadId_t thread_id) {
os_thread_t *thread = (os_thread_t *)thread_id;
// Check parameters
if ((thread == NULL) || (thread->id != osRtxIdThread)) {
EvrRtxThreadGetState(thread, osThreadError);
return osThreadError;
}
EvrRtxThreadGetState(thread, (osThreadState_t)(thread->state & osRtxThreadStateMask));
return ((osThreadState_t)(thread->state & osRtxThreadStateMask));
}
/// Get stack size of a thread.
/// \note API identical to osThreadGetStackSize
uint32_t svcRtxThreadGetStackSize (osThreadId_t thread_id) {
os_thread_t *thread = (os_thread_t *)thread_id;
// Check parameters
if ((thread == NULL) || (thread->id != osRtxIdThread)) {
EvrRtxThreadGetStackSize(thread, 0U);
return 0U;
}
// Check object state
if (thread->state == osRtxObjectInactive) {
EvrRtxThreadGetStackSize(thread, 0U);
return 0U;
}
EvrRtxThreadGetStackSize(thread, thread->stack_size);
return thread->stack_size;
}
/// Get available stack space of a thread based on stack watermark recording during execution.
/// \note API identical to osThreadGetStackSpace
uint32_t svcRtxThreadGetStackSpace (osThreadId_t thread_id) {
os_thread_t *thread = (os_thread_t *)thread_id;
uint32_t *stack;
uint32_t space;
// Check parameters
if ((thread == NULL) || (thread->id != osRtxIdThread)) {
EvrRtxThreadGetStackSpace(thread, 0U);
return 0U;
}
// Check object state
if (thread->state == osRtxObjectInactive) {
EvrRtxThreadGetStackSpace(thread, 0U);
return 0U;
}
if ((osRtxConfig.flags & osRtxConfigStackWatermark) == 0U) {
EvrRtxThreadGetStackSpace(thread, 0U);
return 0U;
}
stack = thread->stack_mem;
if (*stack++ != osRtxStackMagicWord) {
EvrRtxThreadGetStackSpace(thread, 0U);
return 0U;
}
for (space = 4U; space < thread->stack_size; space += 4U) {
if (*stack++ != osRtxStackFillPattern) {
break;
}
}
EvrRtxThreadGetStackSpace(thread, space);
return space;
}
/// Change priority of a thread.
/// \note API identical to osThreadSetPriority
osStatus_t svcRtxThreadSetPriority (osThreadId_t thread_id, osPriority_t priority) {
os_thread_t *thread = (os_thread_t *)thread_id;
// Check parameters
if ((thread == NULL) || (thread->id != osRtxIdThread) ||
(priority < osPriorityIdle) || (priority > osPriorityISR)) {
EvrRtxThreadError(thread, osErrorParameter);
return osErrorParameter;
}
// Check object state
if ((thread->state == osRtxThreadInactive) ||
(thread->state == osRtxThreadTerminated)) {
EvrRtxThreadError(thread, osErrorResource);
return osErrorResource;
}
if (thread->priority != (int8_t)priority) {
thread->priority = (int8_t)priority;
thread->priority_base = (int8_t)priority;
osRtxThreadListSort(thread);
osRtxThreadDispatch(NULL);
}
return osOK;
}
/// Get current priority of a thread.
/// \note API identical to osThreadGetPriority
osPriority_t svcRtxThreadGetPriority (osThreadId_t thread_id) {
os_thread_t *thread = (os_thread_t *)thread_id;
// Check parameters
if ((thread == NULL) || (thread->id != osRtxIdThread)) {
EvrRtxThreadGetPriority(thread, osPriorityError);
return osPriorityError;
}
// Check object state
if ((thread->state == osRtxThreadInactive) ||
(thread->state == osRtxThreadTerminated)) {
EvrRtxThreadGetPriority(thread, osPriorityError);
return osPriorityError;
}
EvrRtxThreadGetPriority(thread, (osPriority_t)thread->priority);
return ((osPriority_t)thread->priority);
}
/// Pass control to next thread that is in state READY.
/// \note API identical to osThreadYield
osStatus_t svcRtxThreadYield (void) {
uint8_t kernel_state;
os_thread_t *thread_running;
os_thread_t *thread_ready;
kernel_state = osRtxKernelGetState();
thread_running = osRtxThreadGetRunning();
thread_ready = osRtxInfo.thread.ready.thread_list;
if ((kernel_state == osRtxKernelRunning) &&
(thread_ready != NULL) && (thread_running != NULL) &&
(thread_ready->priority == thread_running->priority)) {
osRtxThreadListRemove(thread_ready);
osRtxThreadReadyPut(thread_running);
osRtxThreadSwitch(thread_ready);
}
return osOK;
}
/// Suspend execution of a thread.
/// \note API identical to osThreadSuspend
osStatus_t svcRtxThreadSuspend (osThreadId_t thread_id) {
os_thread_t *thread = (os_thread_t *)thread_id;
// Check parameters
if ((thread == NULL) || (thread->id != osRtxIdThread)) {
EvrRtxThreadError(thread, osErrorParameter);
return osErrorParameter;
}
// Check object state
switch (thread->state & osRtxThreadStateMask) {
case osRtxThreadRunning:
if ((osRtxKernelGetState() != osRtxKernelRunning) ||
(osRtxInfo.thread.ready.thread_list == NULL)) {
EvrRtxThreadError(thread, osErrorResource);
return osErrorResource;
}
break;
case osRtxThreadReady:
osRtxThreadListRemove(thread);
break;
case osRtxThreadBlocked:
osRtxThreadListRemove(thread);
osRtxThreadDelayRemove(thread);
break;
case osRtxThreadInactive:
case osRtxThreadTerminated:
default:
EvrRtxThreadError(thread, osErrorResource);
return osErrorResource;
}
EvrRtxThreadSuspended(thread);
if (thread->state == osRtxThreadRunning) {
osRtxThreadSwitch(osRtxThreadListGet(&osRtxInfo.thread.ready));
}
// Update Thread State and put it into Delay list
thread->state = osRtxThreadBlocked;
thread->thread_prev = NULL;
thread->thread_next = NULL;
osRtxThreadDelayInsert(thread, osWaitForever);
return osOK;
}
/// Resume execution of a thread.
/// \note API identical to osThreadResume
osStatus_t svcRtxThreadResume (osThreadId_t thread_id) {
os_thread_t *thread = (os_thread_t *)thread_id;
// Check parameters
if ((thread == NULL) || (thread->id != osRtxIdThread)) {
EvrRtxThreadError(thread, osErrorParameter);
return osErrorParameter;
}
// Check object state
if ((thread->state & osRtxThreadStateMask) != osRtxThreadBlocked) {
EvrRtxThreadError(thread, osErrorResource);
return osErrorResource;
}
EvrRtxThreadResumed(thread);
// Wakeup Thread
osRtxThreadListRemove(thread);
osRtxThreadDelayRemove(thread);
osRtxThreadDispatch(thread);
return osOK;
}
/// Free Thread resources.
/// \param[in] thread thread object.
static void osRtxThreadFree (os_thread_t *thread) {
// Mark object as inactive
thread->state = osRtxThreadInactive;
#if (__DOMAIN_NS == 1U)
// Free secure process stack
if (thread->tz_memory != 0U) {
TZ_FreeModuleContext_S(thread->tz_memory);
}
#endif
// Free stack memory
if (thread->flags & osRtxFlagSystemMemory) {
if (thread->flags & osRtxThreadFlagDefStack) {
osRtxMemoryPoolFree(osRtxInfo.mpi.stack, thread->stack_mem);
} else {
osRtxMemoryFree(osRtxInfo.mem.stack, thread->stack_mem);
}
}
// Free object memory
if (thread->flags & osRtxFlagSystemObject) {
if (osRtxInfo.mpi.thread != NULL) {
osRtxMemoryPoolFree(osRtxInfo.mpi.thread, thread);
} else {
osRtxMemoryFree(osRtxInfo.mem.common, thread);
}
}
}
/// Detach a thread (thread storage can be reclaimed when thread terminates).
/// \note API identical to osThreadDetach
osStatus_t svcRtxThreadDetach (osThreadId_t thread_id) {
os_thread_t *thread = (os_thread_t *)thread_id;
// Check parameters
if ((thread == NULL) || (thread->id != osRtxIdThread)) {
EvrRtxThreadError(thread, osErrorParameter);
return osErrorParameter;
}
// Check object attributes
if ((thread->attr & osThreadJoinable) == 0U) {
EvrRtxThreadError(thread, osRtxErrorThreadNotJoinable);
return osErrorResource;
}
// Check object state
if (thread->state == osRtxThreadInactive) {
EvrRtxThreadError(thread, osErrorResource);
return osErrorResource;
}
if (thread->state == osRtxThreadTerminated) {
osRtxThreadListUnlink(&osRtxInfo.thread.terminate_list, thread);
osRtxThreadFree(thread);
} else {
thread->attr &= ~osThreadJoinable;
}
EvrRtxThreadDetached(thread);
return osOK;
}
/// Wait for specified thread to terminate.
/// \note API identical to osThreadJoin
osStatus_t svcRtxThreadJoin (osThreadId_t thread_id) {
os_thread_t *thread = (os_thread_t *)thread_id;
// Check parameters
if ((thread == NULL) || (thread->id != osRtxIdThread)) {
EvrRtxThreadError(thread, osErrorParameter);
return osErrorParameter;
}
// Check object attributes
if ((thread->attr & osThreadJoinable) == 0U) {
EvrRtxThreadError(thread, osRtxErrorThreadNotJoinable);
return osErrorResource;
}
// Check object state
if ((thread->state == osRtxThreadInactive) ||
(thread->state == osRtxThreadRunning)) {
EvrRtxThreadError(thread, osErrorResource);
return osErrorResource;
}
if (thread->state == osRtxThreadTerminated) {
osRtxThreadListUnlink(&osRtxInfo.thread.terminate_list, thread);
osRtxThreadFree(thread);
} else {
EvrRtxThreadJoinPending(thread);
// Suspend current Thread
if (osRtxThreadWaitEnter(osRtxThreadWaitingJoin, osWaitForever)) {
thread->thread_join = osRtxThreadGetRunning();
}
return osErrorResource;
}
EvrRtxThreadJoined(thread);
return osOK;
}
/// Terminate execution of current running thread.
/// \note API identical to osThreadExit
void svcRtxThreadExit (void) {
os_thread_t *thread;
thread = osRtxThreadGetRunning();
if (thread == NULL) {
return;
}
// Release owned Mutexes
osRtxMutexOwnerRelease(thread->mutex_list);
// Wakeup Thread waiting to Join
if (thread->thread_join != NULL) {
osRtxThreadWaitExit(thread->thread_join, (uint32_t)osOK, false);
EvrRtxThreadJoined(thread->thread_join);
}
// Switch to next Ready Thread
if ((osRtxKernelGetState() != osRtxKernelRunning) ||
(osRtxInfo.thread.ready.thread_list == NULL)) {
return;
}
thread->sp = __get_PSP();
osRtxThreadSwitch(osRtxThreadListGet(&osRtxInfo.thread.ready));
osRtxThreadSetRunning(NULL);
if (((thread->attr & osThreadJoinable) == 0U) || (thread->thread_join != NULL)) {
osRtxThreadFree(thread);
} else {
// Update Thread State and put it into Terminate Thread list
thread->state = osRtxThreadTerminated;
thread->thread_prev = NULL;
thread->thread_next = osRtxInfo.thread.terminate_list;
osRtxInfo.thread.terminate_list = thread;
}
EvrRtxThreadDestroyed(thread);
}
/// Terminate execution of a thread.
/// \note API identical to osThreadTerminate
osStatus_t svcRtxThreadTerminate (osThreadId_t thread_id) {
os_thread_t *thread = (os_thread_t *)thread_id;
// Check parameters
if ((thread == NULL) || (thread->id != osRtxIdThread)) {
EvrRtxThreadError(thread, osErrorParameter);
return osErrorParameter;
}
// Check object state
switch (thread->state & osRtxThreadStateMask) {
case osRtxThreadRunning:
break;
case osRtxThreadReady:
osRtxThreadListRemove(thread);
break;
case osRtxThreadBlocked:
osRtxThreadListRemove(thread);
osRtxThreadDelayRemove(thread);
break;
case osRtxThreadInactive:
case osRtxThreadTerminated:
default:
EvrRtxThreadError(thread, osErrorResource);
return osErrorResource;
}
// Release owned Mutexes
osRtxMutexOwnerRelease(thread->mutex_list);
// Wakeup Thread waiting to Join
if (thread->thread_join != NULL) {
osRtxThreadWaitExit(thread->thread_join, (uint32_t)osOK, false);
EvrRtxThreadJoined(thread->thread_join);
}
// Switch to next Ready Thread when terminating running Thread
if (thread->state == osRtxThreadRunning) {
if ((osRtxKernelGetState() != osRtxKernelRunning) ||
(osRtxInfo.thread.ready.thread_list == NULL)) {
EvrRtxThreadError(thread, osErrorResource);
return osErrorResource;
}
thread->sp = __get_PSP();
osRtxThreadSwitch(osRtxThreadListGet(&osRtxInfo.thread.ready));
osRtxThreadSetRunning(NULL);
} else {
osRtxThreadDispatch(NULL);
}
if (((thread->attr & osThreadJoinable) == 0U) || (thread->thread_join != NULL)) {
osRtxThreadFree(thread);
} else {
// Update Thread State and put it into Terminate Thread list
thread->state = osRtxThreadTerminated;
thread->thread_prev = NULL;
thread->thread_next = osRtxInfo.thread.terminate_list;
osRtxInfo.thread.terminate_list = thread;
}
EvrRtxThreadDestroyed(thread);
return osOK;
}
/// Get number of active threads.
/// \note API identical to osThreadGetCount
uint32_t svcRtxThreadGetCount (void) {
os_thread_t *thread;
uint32_t count;
// Running Thread
count = 1U;
// Ready List
for (thread = osRtxInfo.thread.ready.thread_list;
(thread != NULL); thread = thread->thread_next, count++) {};
// Delay List
for (thread = osRtxInfo.thread.delay_list;
(thread != NULL); thread = thread->delay_next, count++) {};
// Wait List
for (thread = osRtxInfo.thread.wait_list;
(thread != NULL); thread = thread->delay_next, count++) {};
EvrRtxThreadGetCount(count);
return count;
}
/// Enumerate active threads.
/// \note API identical to osThreadEnumerate
uint32_t svcRtxThreadEnumerate (osThreadId_t *thread_array, uint32_t array_items) {
os_thread_t *thread;
uint32_t count;
// Check parameters
if ((thread_array == NULL) || (array_items == 0U)) {
EvrRtxThreadEnumerate(thread_array, array_items, 0U);
return 0U;
}
// Running Thread
*thread_array++ = osRtxThreadGetRunning();
count = 1U;
// Ready List
for (thread = osRtxInfo.thread.ready.thread_list;
(thread != NULL) && (count < array_items); thread = thread->thread_next, count++) {
*thread_array++ = thread;
}
// Delay List
for (thread = osRtxInfo.thread.delay_list;
(thread != NULL) && (count < array_items); thread = thread->delay_next, count++) {
*thread_array++ = thread;
}
// Wait List
for (thread = osRtxInfo.thread.wait_list;
(thread != NULL) && (count < array_items); thread = thread->delay_next, count++) {
*thread_array++ = thread;
}
EvrRtxThreadEnumerate(thread_array, array_items, count);
return count;
}
/// Set the specified Thread Flags of a thread.
/// \note API identical to osThreadFlagsSet
uint32_t svcRtxThreadFlagsSet (osThreadId_t thread_id, uint32_t flags) {
os_thread_t *thread = (os_thread_t *)thread_id;
uint32_t thread_flags;
uint32_t thread_flags0;
// Check parameters
if ((thread == NULL) || (thread->id != osRtxIdThread) ||
(flags & ~((1U << osRtxThreadFlagsLimit) - 1U))) {
EvrRtxThreadError(thread, osErrorParameter);
return ((uint32_t)osErrorParameter);
}
// Check object state
if ((thread->state == osRtxThreadInactive) ||
(thread->state == osRtxThreadTerminated)) {
EvrRtxThreadError(thread, osErrorResource);
return ((uint32_t)osErrorResource);
}
// Set Thread Flags
thread_flags = ThreadFlagsSet(thread, flags);
// Check if Thread is waiting for Thread Flags
if (thread->state == osRtxThreadWaitingThreadFlags) {
thread_flags0 = ThreadFlagsCheck(thread, thread->wait_flags, thread->flags_options);
if (thread_flags0 != 0U) {
if ((thread->flags_options & osFlagsNoClear) == 0U) {
thread_flags = thread_flags0 & ~thread->wait_flags;
} else {
thread_flags = thread_flags0;
}
osRtxThreadWaitExit(thread, thread_flags0, true);
EvrRtxThreadFlagsWaitCompleted(thread->wait_flags, thread->flags_options, thread_flags0);
}
}
EvrRtxThreadFlagsSetDone(thread, thread_flags);
return thread_flags;
}
/// Clear the specified Thread Flags of current running thread.
/// \note API identical to osThreadFlagsClear
uint32_t svcRtxThreadFlagsClear (uint32_t flags) {
os_thread_t *thread;
uint32_t thread_flags;
thread = osRtxThreadGetRunning();
if (thread == NULL) {
EvrRtxThreadError(NULL, osRtxErrorKernelNotRunning);
return ((uint32_t)osError);
}
// Check parameters
if (flags & ~((1U << osRtxThreadFlagsLimit) - 1U)) {
EvrRtxThreadError(thread, osErrorParameter);
return ((uint32_t)osErrorParameter);
}
// Check object state
if ((thread->state == osRtxThreadInactive) ||
(thread->state == osRtxThreadTerminated)) {
EvrRtxThreadError(thread, osErrorResource);
return ((uint32_t)osErrorResource);
}
// Clear Thread Flags
thread_flags = ThreadFlagsClear(thread, flags);
EvrRtxThreadFlagsClearDone(thread_flags);
return thread_flags;
}
/// Get the current Thread Flags of current running thread.
/// \note API identical to osThreadFlagsGet
uint32_t svcRtxThreadFlagsGet (void) {
os_thread_t *thread;
thread = osRtxThreadGetRunning();
if (thread == NULL) {
EvrRtxThreadFlagsGet(0U);
return 0U;
}
// Check object state
if ((thread->state == osRtxThreadInactive) ||
(thread->state == osRtxThreadTerminated)) {
EvrRtxThreadFlagsGet(0U);
return 0U;
}
EvrRtxThreadFlagsGet(thread->thread_flags);
return thread->thread_flags;
}
/// Wait for one or more Thread Flags of the current running thread to become signaled.
/// \note API identical to osThreadFlagsWait
uint32_t svcRtxThreadFlagsWait (uint32_t flags, uint32_t options, uint32_t timeout) {
os_thread_t *thread;
uint32_t thread_flags;
thread = osRtxThreadGetRunning();
if (thread == NULL) {
EvrRtxThreadError(NULL, osRtxErrorKernelNotRunning);
return ((uint32_t)osError);
}
// Check parameters
if (flags & ~((1U << osRtxThreadFlagsLimit) - 1U)) {
EvrRtxThreadError(thread, osErrorParameter);
return ((uint32_t)osErrorParameter);
}
// Check Thread Flags
thread_flags = ThreadFlagsCheck(thread, flags, options);
if (thread_flags != 0U) {
EvrRtxThreadFlagsWaitCompleted(flags, options, thread_flags);
return thread_flags;
}
// Check if timeout is specified
if (timeout != 0U) {
// Store waiting flags and options
EvrRtxThreadFlagsWaitPending(flags, options, timeout);
thread->wait_flags = flags;
thread->flags_options = (uint8_t)options;
// Suspend current Thread
osRtxThreadWaitEnter(osRtxThreadWaitingThreadFlags, timeout);
return ((uint32_t)osErrorTimeout);
}
EvrRtxThreadFlagsWaitNotCompleted(flags, options);
return ((uint32_t)osErrorResource);
}
// ==== ISR Calls ====
/// Set the specified Thread Flags of a thread.
/// \note API identical to osThreadFlagsSet
__STATIC_INLINE
uint32_t isrRtxThreadFlagsSet (osThreadId_t thread_id, uint32_t flags) {
os_thread_t *thread = (os_thread_t *)thread_id;
uint32_t thread_flags;
// Check parameters
if ((thread == NULL) || (thread->id != osRtxIdThread) ||
(flags & ~((1U << osRtxThreadFlagsLimit) - 1U))) {
EvrRtxThreadError(thread, osErrorParameter);
return ((uint32_t)osErrorParameter);
}
// Check object state
if ((thread->state == osRtxThreadInactive) ||
(thread->state == osRtxThreadTerminated)) {
EvrRtxThreadError(thread, osErrorResource);
return ((uint32_t)osErrorResource);
}
// Set Thread Flags
thread_flags = ThreadFlagsSet(thread, flags);
// Register post ISR processing
osRtxPostProcess((os_object_t *)thread);
EvrRtxThreadFlagsSetDone(thread, thread_flags);
return thread_flags;
}
// ==== Public API ====
/// Create a thread and add it to Active Threads.
osThreadId_t osThreadNew (osThreadFunc_t func, void *argument, const osThreadAttr_t *attr) {
EvrRtxThreadNew(func, argument, attr);
if (IS_IRQ_MODE() || IS_IRQ_MASKED()) {
EvrRtxThreadError(NULL, osErrorISR);
return NULL;
}
return __svcThreadNew(func, argument, attr);
}
/// Get name of a thread.
const char *osThreadGetName (osThreadId_t thread_id) {
if (IS_IRQ_MODE() || IS_IRQ_MASKED()) {
EvrRtxThreadGetName(thread_id, NULL);
return NULL;
}
return __svcThreadGetName(thread_id);
}
/// Return the thread ID of the current running thread.
osThreadId_t osThreadGetId (void) {
if (IS_IRQ_MODE() || IS_IRQ_MASKED()) {
EvrRtxThreadGetId(NULL);
return NULL;
}
return __svcThreadGetId();
}
/// Get current thread state of a thread.
osThreadState_t osThreadGetState (osThreadId_t thread_id) {
if (IS_IRQ_MODE() || IS_IRQ_MASKED()) {
EvrRtxThreadGetState(thread_id, osThreadError);
return osThreadError;
}
return __svcThreadGetState(thread_id);
}
/// Get stack size of a thread.
uint32_t osThreadGetStackSize (osThreadId_t thread_id) {
if (IS_IRQ_MODE() || IS_IRQ_MASKED()) {
EvrRtxThreadGetStackSize(thread_id, 0U);
return 0U;
}
return __svcThreadGetStackSize(thread_id);
}
/// Get available stack space of a thread based on stack watermark recording during execution.
uint32_t osThreadGetStackSpace (osThreadId_t thread_id) {
if (IS_IRQ_MODE() || IS_IRQ_MASKED()) {
EvrRtxThreadGetStackSpace(thread_id, 0U);
return 0U;
}
return __svcThreadGetStackSpace(thread_id);
}
/// Change priority of a thread.
osStatus_t osThreadSetPriority (osThreadId_t thread_id, osPriority_t priority) {
EvrRtxThreadSetPriority(thread_id, priority);
if (IS_IRQ_MODE() || IS_IRQ_MASKED()) {
EvrRtxThreadError(thread_id, osErrorISR);
return osErrorISR;
}
return __svcThreadSetPriority(thread_id, priority);
}
/// Get current priority of a thread.
osPriority_t osThreadGetPriority (osThreadId_t thread_id) {
if (IS_IRQ_MODE() || IS_IRQ_MASKED()) {
EvrRtxThreadGetPriority(thread_id, osPriorityError);
return osPriorityError;
}
return __svcThreadGetPriority(thread_id);
}
/// Pass control to next thread that is in state READY.
osStatus_t osThreadYield (void) {
EvrRtxThreadYield();
if (IS_IRQ_MODE() || IS_IRQ_MASKED()) {
EvrRtxThreadError(NULL, osErrorISR);
return osErrorISR;
}
return __svcThreadYield();
}
/// Suspend execution of a thread.
osStatus_t osThreadSuspend (osThreadId_t thread_id) {
EvrRtxThreadSuspend(thread_id);
if (IS_IRQ_MODE() || IS_IRQ_MASKED()) {
EvrRtxThreadError(thread_id, osErrorISR);
return osErrorISR;
}
return __svcThreadSuspend(thread_id);
}
/// Resume execution of a thread.
osStatus_t osThreadResume (osThreadId_t thread_id) {
EvrRtxThreadResume(thread_id);
if (IS_IRQ_MODE() || IS_IRQ_MASKED()) {
EvrRtxThreadError(thread_id, osErrorISR);
return osErrorISR;
}
return __svcThreadResume(thread_id);
}
/// Detach a thread (thread storage can be reclaimed when thread terminates).
osStatus_t osThreadDetach (osThreadId_t thread_id) {
EvrRtxThreadDetach(thread_id);
if (IS_IRQ_MODE() || IS_IRQ_MASKED()) {
EvrRtxThreadError(thread_id, osErrorISR);
return osErrorISR;
}
return __svcThreadDetach(thread_id);
}
/// Wait for specified thread to terminate.
osStatus_t osThreadJoin (osThreadId_t thread_id) {
EvrRtxThreadJoin(thread_id);
if (IS_IRQ_MODE() || IS_IRQ_MASKED()) {
EvrRtxThreadError(thread_id, osErrorISR);
return osErrorISR;
}
return __svcThreadJoin(thread_id);
}
/// Terminate execution of current running thread.
__NO_RETURN void osThreadExit (void) {
EvrRtxThreadExit();
__svcThreadExit();
EvrRtxThreadError(NULL, osError);
for (;;);
}
/// Terminate execution of a thread.
osStatus_t osThreadTerminate (osThreadId_t thread_id) {
EvrRtxThreadTerminate(thread_id);
if (IS_IRQ_MODE() || IS_IRQ_MASKED()) {
EvrRtxThreadError(thread_id, osErrorISR);
return osErrorISR;
}
return __svcThreadTerminate(thread_id);
}
/// Get number of active threads.
uint32_t osThreadGetCount (void) {
if (IS_IRQ_MODE() || IS_IRQ_MASKED()) {
EvrRtxThreadGetCount(0U);
return 0U;
}
return __svcThreadGetCount();
}
/// Enumerate active threads.
uint32_t osThreadEnumerate (osThreadId_t *thread_array, uint32_t array_items) {
if (IS_IRQ_MODE() || IS_IRQ_MASKED()) {
EvrRtxThreadEnumerate(thread_array, array_items, 0U);
return 0U;
}
return __svcThreadEnumerate(thread_array, array_items);
}
/// Set the specified Thread Flags of a thread.
uint32_t osThreadFlagsSet (osThreadId_t thread_id, uint32_t flags) {
EvrRtxThreadFlagsSet(thread_id, flags);
if (IS_IRQ_MODE() || IS_IRQ_MASKED()) {
return isrRtxThreadFlagsSet(thread_id, flags);
} else {
return __svcThreadFlagsSet(thread_id, flags);
}
}
/// Clear the specified Thread Flags of current running thread.
uint32_t osThreadFlagsClear (uint32_t flags) {
EvrRtxThreadFlagsClear(flags);
if (IS_IRQ_MODE() || IS_IRQ_MASKED()) {
EvrRtxThreadError(NULL, osErrorISR);
return ((uint32_t)osErrorISR);
}
return __svcThreadFlagsClear(flags);
}
/// Get the current Thread Flags of current running thread.
uint32_t osThreadFlagsGet (void) {
if (IS_IRQ_MODE() || IS_IRQ_MASKED()) {
EvrRtxThreadFlagsGet(0U);
return 0U;
}
return __svcThreadFlagsGet();
}
/// Wait for one or more Thread Flags of the current running thread to become signaled.
uint32_t osThreadFlagsWait (uint32_t flags, uint32_t options, uint32_t timeout) {
EvrRtxThreadFlagsWait(flags, options, timeout);
if (IS_IRQ_MODE() || IS_IRQ_MASKED()) {
EvrRtxThreadError(NULL, osErrorISR);
return ((uint32_t)osErrorISR);
}
return __svcThreadFlagsWait(flags, options, timeout);
}